Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often relying on fluorescent and spectroscopic techniques, but with the refractometric approach being also considered when the objective is high measurement performance, particularly when focusing on measurand resolution. In this work, we address this subject proposing and theoretically analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. The optrode structure is a fiber optic tapered tip layout incorporating a lateral bimetallic layer (silver + gold) and operating in reflection.
Optical fiber sensors based on the phenomenon of plasmonic resonance can be interrogated applying different methods, the most common one being the spectral approach where the measurand information is derived from the reading of the wavelength resonance dip. In principle, a far better performance can be achieved considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This approach is investigated in this work for surface plasmon based fiber optic sensors with overlays which are combinations of bimetallic layers, permitting not only to tune the wavelength of the plasmon resonance but also the sensitivity associated with the phase interrogation of the sensors. The metals considered for the present analysis are silver, gold, copper, and aluminum.
Optical fiber sensors based on the phenomenon of plasmonic resonance can be interrogated applying different methods, the most common one being the spectral approach where the measurand information is derived from the reading of the wavelength resonance dip. In principle, a far better performance can be achieved considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This approach is investigated in this work for fiber optic SPR sensors with overlays which are combinations of metallic and dielectric thin films, permitting not only to tune the wavelength of the SPR resonance but also the sensitivity associated with the phase interrogation of the sensors.
An analytical model based on geometrical optics and multilayer transfer matrix method is applied to determine the sensing properties of tapered optical fiber based SPR sensors incorporating bimetallic (Gold and Silver) layers, particularly when phase interrogation is considered. Phase interrogation is studied as a methodology to attain enhanced sensitivities. The performance of the sensing heads as function of the bimetallic layers and taper parameters is analyzed. It is shown the bimetallic combination is capable to provide larger values of sensitivity compared with the single layer approach. The results derived from this study are guiding the experimental study of these structures.
An analytical model based on geometrical optics and multilayer transfer matrix method is applied to the surface plasmonic resonance supported by fibre taper structures in the context of optical sensing applications. Phase interrogation is considered in particular as a methodology to attain enhanced sensitivities, and the performance of the sensing heads as function of the metal clad and taper parameters is analyzed. General topics concerning the actual relevance of plasmonics are also presented, first in a global perspective and then when applied to sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.