Body flexibility is an important indicator that can measure whether an individual is healthy or not. Traditionally, we need to prepare a protractor and the subject need to perform a pre-defined set of actions. The measurement takes place at the same time when the subject performs required action, which is clumsy and inconvenient. In this paper, we propose a statistical learning model using the technique of random forest. The proposed system can classify body flexibility based on LDF signals analyzed in the frequency domain. The reasons of using random forest are because of their efficiency (fast in classification), interpretable structures and their ability to filter out irrelevant features. In addition, using random forest can prevent the problem of over-fitting, and the output model will become more robust to noises. In our experiment, we use chirp Z-transform (CZT), to transform a LDF signal into its energy values in five frequency bands. Combining the power of the random forest algorithm and frequency band analysis methods, a maximum recognition rate of 66% is achieved. Compared to traditional flexibility measuring process, the proposed system shortens the long and tedious stages of measurement to a simple, fast and pre-defined activity set. The major contributions of our work include (1) a novel body flexibility classification scheme using non-invasive biomedical sensor; (2) a set of designed protocol which is easy to conduct and practice; (3) a high precision classification scheme which combines the power of spectrum analysis and machine learning algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.