Photodynamic therapy is an effective, minimally invasive skin cancer treatment modality with few side effects. Improved therapeutic selectivity and efficacy is expected if treatment is optimized individually for each patient based on detailed measurements prior and during the treatment. The handheld system presented allows measuring optical properties of the skin, the rate of photosensitizer photobleaching during the ALA PDT and oxygen saturation in the tissue.
The photobleaching rate is monitored using fluorescence spectroscopy, where protoporphyrin IX in tissue is exited by 410 nm (blue) or 532 nm (green) laser light, and fluorescence in the 580-800 nm range is monitored. The photobleaching rate is calculated by correlating the measured spectrum with known protoporphyrin IX, photoproduct and nonspecific tissue autofluorescence spectra using correlation analysis. Double-wavelength excitation allows a rough estimation of the depth of the fluorescence source due to the significant difference in penetration depth for blue and green light.
Blood concentration and oxygenation in the tissue are found from the white light reflectance spectrum in the 460-800 nm range. Known spectra for the oxy- and deoxyhemoglobin, melanin, and tissue baseline absorption and tissue scattering are substituted in nonlinear equations to find the penetration depth and diffuse reflectance coefficient. The nonlinear equation for the diffuse reflectance coefficient is solved for blood and melanin concentrations and blood oxygenation values that provide the best fit to the measured spectrum. The optical properties of the tissue obtained from the reflectance spectroscopy are used to correct the fluorescence data.
A noncontact probe with 5 fibers (3 excitation and 2 detection) focused to the same 5 mm diameter spot: 2 excitation lasers, a white light lamp and a two-channel spectrometer are used. A LabView program with custom nonlinear equation solvers written in C++ automatically performs the measurements and calculations, and writes data to a database. The system is currently used in a clinical trial to find the relationship between skin pigmentation, oxygen saturation in blood, photobleaching rate and optimal fluence rate for skin cancer treatment of actinic keratoses.
This paper presents a low cost semiconductor red laser light delivery system for esophagus cancer treatment. The system is small enough to slide inside the patient’s body and it produces up to 4 Watts of optical power from several semiconductor lasers. Specifically, the paper presents optimized high power 635 nm semiconductor laser array design with testing results. The laser array is more powerful than conventional ridge waveguide and more reliable than the broad area lasers at this wavelength. The design optimization is based on i) thermal analysis using finite element analysis as well as analytical calculations for minimizing laser array temperature, and ii) specially designed scattering elements with nanoparticles, to achieve uniform illumination.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.