Ivan Evseev, Joaquim Teixeira de Assis, Olga Yevseyeva, Hugo Schelin, Margio Klock, Joao Setti, Ricardo Lopes, Ubirajara Vinagre Filho, Reinhard Schulte, David Williams
In existing proton treatment centers, dose calculations are performed based on x-ray computerized tomography (CT). Alternatively, the therapeutic proton beam could be used to collect the data for treatment planning via proton CT (pCT). With the development of medical proton gantries, first at Loma Linda University Medical Center and now in several other proton treatment centers, it is of interest to continue the early pCT investigations of the 1970s and the early 1980s. From that time, the basic idea of the pCT method has advanced from average energy loss measurements to an individual proton tracking technique. This reduces the image degradation due to multiple Coulomb scattering. Thereby, the central pCT problem shifts to the fidelity of the physical information obtained about the scanned patient, which will be used for proton treatment planning. The accuracy of relative electron density distributions extracted from pCT images was investigated in this work using continuous slowing down approximation (CSDA) and water-equivalent-thickness (WET) concepts. Analytical results were checked against Monte Carlo simulations, which were obtained with SRIM2003 and GEANT4 Monte Carlo software packages. The range of applications and the sources of absolute errors are discussed.
Reinhard Schulte, Margio Klock, Vladimir Bashkirov, Ivan Evseev, Joaquim de Assis, Olga Yevseyeva, Ricardo Lopes, Tianfang Li, David Williams, Andrew Wroe, Hugo Schelin
Conformal proton radiation therapy requires accurate prediction of the Bragg peak position. This problem may be solved by using protons rather than conventional x-rays to determine the relative electron density distribution via proton computed tomography (proton CT). However, proton CT has its own limitations, which need to be carefully studied before this technique can be introduced into routine clinical practice. In this work, we have used analytical relationships as well as the Monte Carlo simulation tool GEANT4 to study the principal resolution limits of proton CT. The GEANT4 simulations were validated by comparing them to predictions of the Bethe Bloch theory and Tschalar's theory of energy loss straggling, and were found to be in good agreement. The relationship between phantom thickness, initial energy, and the relative electron density uncertainty was systematically investigated to estimate the number of protons and dose needed to obtain a given density resolution. The predictions of this study were verified by simulating the performance of a hypothetical proton CT scanner when imaging a cylindrical water phantom with embedded density inhomogeneities. We show that a reasonable density resolution can be achieved with a relatively small number of protons, thus providing a possible dose advantage over x-ray CT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.