The Joint Center for Satellite Data Assimilation (JCSDA) was established by NASA and NOAA in 2001, with the DoD becoming a partner in 2002. The goal of the JCSDA is to accelerate the use of observations from earth-orbiting satellites in operational numerical analysis and prediction models for the purpose of improving weather forecasts, improving seasonal to interannual climate forecasts, and increasing the accuracy of climate data sets. Advanced instruments of the current and planned satellite missions, do and will increasingly provide large volumes of data related to atmospheric, oceanic, and land surface state. These data will exhibit accuracies and spatial, spectral and temporal resolutions never before achieved. The JCSDA will ensure that the maximum benefit from investment in space is realised from the advanced global observing system. It will also help accelerate the use of satellite data from both operational and experimental spacecraft for weather and climate related activities. To this end the advancement of data assimilation science by JCSDA has included the establishment of the JCSDA Community Radiative Transfer Model (CRTM) and continual upgrades including, the incorporation of AIRS and snow and ice emissivity models for improving the use of microwave sounding data over high latitudes, preparation for use of METOP IASI/AMSU/HSB, DMSP SSMIS and CHAMP GPS data, real-time delivery of EOS-Aqua AMSR-E to NWP centers, and improved physically based SST analyses. Eighteen other research projects are also being supported by the JCSDA (e.g. use of cloudy radiances from advanced satellite instruments) to develop a state of-the-art satellite data assimilation system. The work undertaken by the JCSDA represents a key component of GEOSS. In particular data assimilation, data impact studies, OSSEs, THORPEX and network design studies are key activities of GEOSS.
A field campaign featuring three collocated Doppler wind lidars was conducted over ten days during September 2000 at the GroundWinds Observatory in New Hampshire. The lidars were dissimilar in wavelength and Doppler detection method. The GroundWinds lidar operated at 532 nm and used fringe-imaging direct detection, while the Goddard Lidar Observatory for Winds (GLOW) ran at 355 nm and employed double-edge filter direct detection, and the NOAA mini-MOPA operated at 10 microns and used heterodyne detection. The objectives of the campaign were (1) to demonstrate the capability of the GroundWinds lidar to measure winds while employing several novel components, and (2) to compare directly the radial wind velocities measured by the three lidars for as wide a variety of conditions as possible. Baseline wind profiles and ancillary meteorological data (temperature and humidity profiles) were obtained by launching GPS radiosondes from the observatory as frequently as every 90 minutes. During the final week of the campaign the lidars collected data along common lines-of-sight for several extended periods. The wind speed varied from light to jet stream values, and sky conditions ranged from clear to thick clouds. Intercomparisons of overlapping lidar and radiosonde observations show that all three lidars were able to measure wind given sufficient backscatter. At ranged volumes containing thicker clouds, and those beyond, the wind sensing capability of the direct detection lidars was adversely affected.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.