Identification of tumor margins in the operating room in real time is a critical challenge for surgical procedures that serve as cancer cure. Breast conserving surgery (BCS) is particularly affected by this problem, with current reexcision rates above 25%. Due to a lack of clinically available methodologies for detection of involved or close tumor margins, much effort is focused on developing intraoperative margin assessment modalities that can aid in addressing this unmet clinical need. BCS provides a unique opportunity to design contrast-based technologies that are able to assess tumor margins independent from the patient, providing a rapid pathway from bench to bedside at a much lower cost. Since resected tissue is removed from the patient’s blood supply, non-specific contrast agent uptake becomes a challenge due to the lack of clearance. Therefore, a dual probe, ratiometric fluorescence imaging approach was taken in an effort to reduce non-specific signal, and provide a modality that could demonstrate rapid, robust margin assessment on resected patient samples. Termed, dual-stain difference specimen imaging (DDSI), DDSI includes the use of spectrally unique, and fluorescently labeled target-specific, as well as non-specific biomarkers. In the present study, we have applied epidermal growth factor receptor (EGFR) targeted DDSI to tumor xenografts with variable EGFR expression levels using a previously optimized staining protocol, allowing for a quantitative assessment of the predictive power of the technique under biologically relevant conditions. Due to the presence of necrosis in the model tumors, ring analysis was employed to characterize diagnostic accuracy as measured by receiver operator characteristic (ROC) curve analysis. Our findings demonstrate the robust nature of the DDSI technique even in the presence of variable biomarker expression and spatial patterns. These results support the continued development of this technology as a robust diagnostic tool for tumor margin assessment in resected specimens during BCS.
Intraoperative margin assessment is imperative to cancer cure but is a continued challenge to successful surgery. Breast conserving surgery is a relevant example, where a cosmetically improved outcome is gained over mastectomy, but re-excision is required in >25 % of cases due to positive or closely involved margins. Clinical translation of margin assessment modalities that must directly contact the patient or required administered contrast agents are time consuming and costly to move from bench to bedside. Tumor resections provide a unique surgical opportunity to deploy margin assessment technologies including contrast agents on the resected tissues, substantially shortening the path to the clinic. However, staining of resected tissues is plagued by nonspecific uptake. A ratiometric imaging approach where matched targeted and untargeted probes are used for staining has demonstrated substantially improved biomarker quantification over staining with conventional targeted contrast agents alone. Our group has developed an antibody-based ratiometric imaging technology using fluorescently labeled, spectrally distinct targeted and untargeted antibody probes termed dual-stain difference specimen imaging (DDSI). Herein, the targeted biomarker expression level and pattern are evaluated for their effects on DDSI diagnostic potential. Epidermal growth factor receptor expression level was correlated to DDSI diagnostic potential, which was found to be robust to spatial pattern expression variation. These results highlight the utility of DDSI for accurate margin assessment of freshly resected tumor specimens.
Complete removal of malignant tissue during primary breast cancer resection is a critical prognostic indicator of local recurrence and overall patient survival, making intraoperative tumor margin assessment essential. Positive margin status following breast-conserving surgery (BCS) is a common difficulty reported in 20-60% of patients, with re-excision rates >55%. Re-excision increases the risk of morbidity and delays the use of adjuvant therapy, thus significant efforts are underway to develop successful intraoperative margin assessment strategies to eliminate repeat surgery. One novel strategy uses topical application of dual probe staining and a fluorescence imaging strategy termed dual probe difference specimen imaging (DDSI) where a receptor-targeted fluorescent probe and an untargeted, spectrally-distinct fluorescent probe are topically applied to the fresh resected specimen. While conceptually simple, resected specimen staining is dominated by non-specific uptake of fluorescent probes in normal tissue, requiring the use of a dual probe strategy for accuracy. DDSI permits fluorescence images from both the targeted and untargeted probes to be used to calculate a normalized difference image, facilitating quantitative identification of targeted probe tumor distribution in the specimen. While previous reports suggested this approach is a promising new tool for surgical guidance, advancing the approach into the clinic requires methodical protocol optimization and validation. Current work is focused on development of targeted and untargeted small molecule affinity tags, facilitating access to intracellular breast cancer biomarkers and quantitative assessment of DDSI signal in the context of varied biomarker expression level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.