Image intensifier tubes, as part of night vision devices, have been the primary devices for the detection and amplification
of near infrared light for night vision operations. In this paper, we demonstrate a novel all-optical night vision amplifier
device with a potential to replace the image intensifier tube in night vision goggles. This image amplifier is based on a
novel structure of semiconductor and spectrally tunable liquid crystal (LC) materials within a thin cell. The LC reacts to
near-infrared (NIR) radiation but is unaffected by visible light, allowing see-through capability including visible-wavelength
cockpit light. The technology is made very attractive by its high sensitivity, spatial resolution, and contrast
without expensive, bulky, and heavy optics or high-voltage components.
An inexpensive, easily integrated, 40 Gbps photoreceiver operating in the communications band would revolutionize the telecommunications industry. While generation of 40 Gbps data is not difficult, its reception and decoding require specific technologies. We present a 40 Gbps photoreceiver that exceeds the capabilities of current devices. This photoreceiver is based on a technology we call "nanodust." This new technology enables nanoscale photodetectors to be embedded in matrices made from a different semiconductor, or directly integrated into a CMOS amplification circuit. Photoreceivers based on quantum dust technology can be designed to operate in any spectral region, including the telecommunications bands near 1.31 and 1.55 micrometers. This technology also lends itself to normal-incidence detection, enabling a large detector size with its associated increase in sensitivity, even at high speeds and reception wavelengths beyond the capability of silicon.
Head-mounted or helmet-mounted displays (HMDs) have long proven invaluable for many military applications. Integrated with head position, orientation, and/or eye-tracking sensors, HMDs can be powerful tools for training. For such training applications as flight simulation, HMDs need to be lightweight and compact with good center-of-gravity characteristics, and must display realistic full-color imagery with eye-limited resolution and large field-of-view (FOV) so that the pilot sees a truly realistic out-the-window scene. Under bright illumination, the resolution of the eye is ~300 μr (1 arc-min), setting the minimum HMD resolution. There are several methods of achieving this resolution, including increasing the number of individual pixels on a CRT or LCD display, thereby increasing the size, weight, and complexity of the HMD; dithering the image to provide an apparent resolution increase at the cost of reduced frame rate; and tiling normal resolution subimages into a single, larger high-resolution image. Physical Optics Corporation (POC) is developing a 5120 × 4096 pixel HMD covering 1500 × 1200 mr with resolution of 300 μr by tiling 20 subimages, each of which has a resolution of 1024 × 1024 pixels, in a 5 × 4 array. We present theory and results of our preliminary development of this HMD, resulting in a 4k × 1k image tiled from 16 subimages, each with resolution 512 × 512, in an 8 × 2 array.
Advances in the development of imaging sensors depend upon (among other things) the testing capabilities of research laboratories. Sensors and sensor suites need to be rigorously tested under laboratory and field conditions before being put to use. Real-time dynamic simulation of real targets is a key component of such testing, as actual full-scale tests with real targets are extremely expensive and time consuming and are not suitable for early stages of development. Dynamic projectors simulate tactical images and scenes. Several technologies exist for projecting IR and visible scenes to simulate tactical battlefield patterns - large format resistor arrays, liquid crystal light valves, Eidophor type projecting systems, and micromirror arrays, for example. These technologies are slow, or are restricted either in the modulator array size or in spectral bandwidth. In addition, many operate only in specific bandwidth regions. Physical Optics Corporation is developing an alternative to current scene projectors. This projector is designed to operate over the visible, near-IR, MWIR, and LWIR spectra simultaneously, from 300 nm to 20 μm. The resolution is 2 megapixels, and the designed frame rate is 120 Hz (40 Hz in color). To ensure high-resolution visible imagery and pixel-to-pixel apparent temperature difference of 100°C, the contrast between adjacent pixels is >100:1 in the visible to near-IR, MWIR, and LWIR. This scene projector is designed to produce a flickerless analog signal, suitable for staring and scanning arrays, and to be capable of operation in a hardware-in-the-loop test system. Tests performed on an initial prototype demonstrated contrast of 250:1 in the visible with non-optimized hardware.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.