Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks, the inconvenience of handling samples of blood, and the cost of reagent strips. A continuous glucose sensor coupled with an insulin delivery system could provide closed-loop glucose control without the need for discrete sampling or user intervention. We describe an optical glucose microsensor based on absorption spectroscopy in interstitial fluid that can potentially be implanted to provide continuous glucose readings. Light from a GaInAsSb LED in the 2.2-2.4 μm wavelength range is passed through a sample of interstitial fluid and a linear variable filter before being detected by an uncooled, 32-element GaInAsSb detector array. Spectral resolution is provided by the linear variable filter, which has a 10 nm band pass and a center wavelength that varies from 2.18-2.38 μm (4600-4200 cm-1) over the length of the detector array. The sensor assembly is a monolithic design requiring no coupling optics. In the present system, the LED running with 100 mA of drive current delivers 20 nW of power to each of the detector pixels, which have a noise-equivalent-power of 3 pW/Hz1/2. This is sufficient to provide a signal-to-noise ratio of 4500 Hz1/2 under detector-noise limited conditions. This signal-to-noise ratio corresponds to a spectral noise level less than 10 μAU for a five minute integration, which should be sufficient for sub-millimolar glucose detection.
The performances of a pin versus a pn structure from GaInAsSb materials operating at room temperature are compared both from a theoretical point of view and experimentally. Theoretically, it is found in materials limited by generation-recombination currents, pn junctions have a higher D* than pin junctions. The thinner depletion region of pn junctions results in a lower responsivity but a higher dynamic resistance, giving an overall higher D* compared to a pin structure. A series of five p+pn+ Ga0.80In0.20As0.18Sb0.82 detector structures latticed matched to GaSb substrates and with 2.37 μm cut off wavelength were grown by molecular beam epitaxy and processed into variable size mesa photodiodes. Only the doping of the absorbing (p) region was varied from sample to sample, starting with nominally undoped (~1x1016 cm-3 pbackground doping due to native defects) and increasing the doping until a p+n+ structure was attained. Room temperature dynamic resistance-area product R0A was measured for each sample. A simple method is presented and used to disentangle perimeter from areal leakage currents. All five samples had comparable R0A's. Maximum measured R0A was 30 Ω-cm2 in the largest mesas. Extracted R0A's in the zero perimeter/area limit were about ~50 Ω-cm2 (20-100 Ω-cm2) for all samples. Within uncertainty, no clear trend was seen. Tentative explanations are proposed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.