In this paper, we describe an effort to build a new deep edge detection method designed to detect weather-related phenomena such as clouds and planetary boundary layer heights present in backscatter profile imagery. This method builds on the existing deep model called Holistically-Defined Edge Detection (HED), which was shown to perform better than other information theory and convolutional network techniques for edge detection. Though HED outperforms techniques such as Canny Edge detection, HED’s performance is based on it being trained on natural images with very little noise. Weather-related backscatter profiles, such as those generated from LIDAR-based ceilometers, often contain noise. In addition, there is often less of a difference in the pixel density between edges and non-edges, and due to atmospheric dynamics, continuous edges are not always detected in the images. Under these conditions when using HED, subtle but useful edges are lost from side outputs during the fusing process while the network is being trained. Canny Edge detection also does not perform well under these conditions, as it determines edges based on the differences in pixel density. We describe a new edge detection deep network developed specifically for overcoming these issues by applying physics-aware attention mechanisms to the side outputs of the HED learning process. We show how this method is able to learn the subtle edges as opposed to HED or Canny, when used to identify planetary boundary layer heights which involves distinguishing the mixing layer, residual layer, and nocturnal layer in addition to the cloud heights for ceilometerbased backscatter. Though the intent of this network is to learn planetary boundary layer heights and cloud heights, this method could be applied to other weather-related phenomena and applied to backscatter imagery generated from other sources such as satellites.
Understanding how the D-Wave quantum computer could be used for machine learning problems is of growing interest. Our work explores the feasibility of using the D-Wave as a sampler for a machine learning task. We describe a hybrid method that combines a classical deep neural network autoencoder with a quantum annealing Restricted Boltzmann Machine (RBM) using the D-Wave for image generation. Our method overcomes two key limitations in the 2000-qubit D-Wave processor, namely the limited number of qubits available to accommodate typical problem sizes for fully connected quantum objective functions, and samples that are binary pixel representations. As a consequence of these limitations we are able to show how we achieved nearly a 22-fold compression factor of grayscale 28 x 28 sized images to binary 6 x 6 sized images with a lossy recovery of the original 28 x 28 grayscale images. We further show how generating samples from the D-Wave after training the RBM, resulted in 28 x 28 images that were variations of the original input data distribution, as opposed to recreating the training samples. We evaluated the quality of this method by using a downstream classification method. We formulated a MNIST classification problem using a deep convolutional neural network that used samples from the quantum RBM to train the MNIST classifier and compared the results with a MNIST classifier trained with the original MNIST training data set, as well as a MNIST classifier trained using classical RBM samples. We also explored using a secondary dataset, the MNIST Fashion dataset and demonstrate the first quantum-generated fashion. Our hybrid autoencoder approach indicates advantage for RBM results relative to the use of a current RBM classical computer implementation for image-based machine learning and even more promising results for the next generation D-Wave quantum system. Our method for compression and image mappings is not constrained to RBMs, the autoencoder part of this method could be coupled with other quantum-based algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.