Extensive research is underway to understand and exploit the interface between biological materials and integrated systems Today, "nanotechnology" can be defined as a group of emerging technologies in which the structure of matter is controlled at the nanometer scale, the scale of small numbers of atoms, to produce novel materials and devices having useful and unique properties. An ideal biological candidate for use in nanoscale devices is the microtubule, an essential component of the eukaryotic cytoskeleton, which, unlike most proteins, has been shown to be electrically conductive. Due to the presence of an intrinsic dipole in the protein polymer, RF reflectance spectroscopy was chosen as an interrogation method. RF reflectance spectroscopy measures the electrical response of a sample in response to sinusoidally alternating currents as a function of frequency By interrogating the protein electrically, we are able to detect the polymerization state of the system, track any associated conductivity changes, and monitor binding of microtubule-associated proteins. We demonstrate manipulation of the microtubule system through the use of low-frequency electric fields, and discuss implications for sensor development.
We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all point to the presence of two classes of molecules: proteins with Cis and Trans-oriented chromophores. Immobilization of HcRed in water-filled pores of polyvinyl alcohol leads to a polymer matrix - protein barrel interaction which results in a 'freezing' of the chromophore in a stable conformation for which non-radiative deactivation pathways are either suppressed or reduced. As a result, proteins with both Cis- and Trans-oriented chromophores can be detected at the single molecule level. Polymer chain motion is suggested as a mediator for an eventual cis-trans isomerization of the chromophore in the case of single immobilized proteins.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.