Crohn’s disease (CD) is a chronic and relapsing inflammatory condition that affects segments of the gastrointestinal tract. CD activity is determined by histological findings, particularly the density of neutrophils observed on Hematoxylin and Eosin stains (H&E) imaging. However, understanding the broader morphometry and local cell arrangement beyond cell counting and tissue morphology remains challenging. To address this, we characterize six distinct cell types from H&E images and develop a novel approach for the local spatial signature of each cell. Specifically, we create a 10-cell neighborhood matrix, representing neighboring cell arrangements for each individual cell. Utilizing t-SNE for non-linear spatial projection in scatter-plot and Kernel Density Estimation contour-plot formats, our study examines patterns of differences in the cellular environment associated with the odds ratio of spatial patterns between active CD and control groups. This analysis is based on data collected at the two research institutes. The findings reveal heterogeneous nearest-neighbor patterns, signifying distinct tendencies of cell clustering, with a particular focus on the rectum region. These variations underscore the impact of data heterogeneity on cell spatial arrangements in CD patients. Moreover, the spatial distribution disparities between the two research sites highlight the significance of collaborative efforts among healthcare organizations. All research analysis pipeline tools are available at https://github.com/MASILab/cellNN.
Understanding the way cells communicate, co-locate, and interrelate is essential to understanding human physiology. Hematoxylin and eosin (H&E) staining is ubiquitously available both for clinical studies and research. The Colon Nucleus Identification and Classification (CoNIC) Challenge has recently innovated on robust artificial intelligence labeling of six cell types on H&E stains of the colon. However, this is a very small fraction of the number of potential cell classification types. Specifically, the CoNIC Challenge is unable to classify epithelial subtypes (progenitor, endocrine, goblet), lymphocyte subtypes (B, helper T, cytotoxic T), or connective subtypes (fibroblasts, stromal). In this paper, we propose to use inter-modality learning to label previously un-labelable cell types on virtual H&E. We leveraged multiplexed immunofluorescence (MxIF) histology imaging to identify 14 subclasses of cell types. We performed style transfer to synthesize virtual H&E from MxIF and transferred the higher density labels from MxIF to these virtual H&E images. We then evaluated the efficacy of learning in this approach. We identified helper T and progenitor nuclei with positive predictive values of 0.34 ± 0.15 (prevalence 0.03 ± 0.01) and 0.47 ± 0.1 (prevalence 0.07 ± 0.02) respectively on virtual H&E. This approach represents a promising step towards automating annotation in digital pathology.
The Tangram algorithm is a benchmarking method of aligning single-cell data to various forms of spatial data collected from the same region. With this data alignment, the annotation of the single-cell data can be projected to spatial data. However, the cell composition of the single-cell data and spatial data might be different because of heterogeneous cell distribution. Whether the Tangram algorithm can be adapted when the two data have different cell-type ratios has not been discussed in previous works. In our practical application that maps the cell-type classification results of single-cell data to the Multiplex immunofluorescence spatial data, cell-type ratios were different. In this work, both simulation and empirical validation were conducted to quantitatively explore the impact of the mismatched cell-type ratio on the Tangram mapping in different situations. Results show that the cell-type difference has a negative influence on annotation mapping accuracy.
Multiplex immunofluorescence (MxIF) is an emerging imaging technology whose downstream molecular analytics highly rely upon the effectiveness of cell segmentation. In practice, multiple membrane markers (e.g., NaKATPase, PanCK and β-catenin) are employed to stain membranes for different cell types, so as to achieve a more comprehensive cell segmentation since no single marker fits all cell types. However, prevalent watershed-based image processing might yield inferior capability for modeling complicated relationships between markers. For example, some markers can be misleading due to questionable stain quality. In this paper, we propose a deep learning based membrane segmentation method to aggregate complementary information that is uniquely provided by large scale MxIF markers. We aim to segment tubular membrane structure in MxIF data using global (membrane markers z-stack projection image) and local (separate individual markers) information to maximize topology preservation with deep learning. Specifically, we investigate the feasibility of four SOTA 2D deep networks and four volumetric-based loss functions. We conducted a comprehensive ablation study to assess the sensitivity of the proposed method with various combinations of input channels. Beyond using adjusted rand index (ARI) as the evaluation metric, which was inspired by the clDice, we propose a novel volumetric metric that is specific for skeletal structure, denoted asclDiceSKEL. In total, 80 membrane MxIF images were manually traced for 5-fold cross-validation. Our model outperforms the baseline with a 20.2% and 41.3% increase in clDiceSKEL and ARI performance, which is significant (p<0.05) using the Wilcoxon signed rank test. Our work explores a promising direction for advancing MxIF imaging cell segmentation with deep learning membrane segmentation. Tools are available at https://github.com/MASILab/MxIF_Membrane_Segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.