A magnetic field sensor based on multilongitudinal mode fiber laser (MMFL) is proposed and demonstrated. The MMFL contains two fiber Bragg gratings (FBGs), one of which is fixed on a magnetostrictive alloy (MA) and works as the sensing FBG. With a magnetic field applied, the MA stretches and transforms the magnetic field into strain due to the magnetostrictive effect of the MA. In this case, the wavelength of sensing FBG and the length of the MMFL cavity both shift with the magnetic field, ultimately resulting in the frequency shift of the longitudinal modes of the MMFL. By sending these longitudinal modes of the MMFL to a photodetector, the longitudinal mode beat signals (LMBSs) are generated, whose frequency would shift with the magnetic field. We experimentally verify that the magnetic field can be demodulated via the LMBS and demonstrate a sensitivity of -47 kHz/mT when selecting an LMBS at 1.608 GHz for demodulation. We also demodulate in optical domain by means of tracking the wavelength of the sensing FBG, a sensitivity of 1.5 pm/mT is achieved. Compared with the conventional fiber optic magnetic field sensors demodulated in the optical domain, radio-frequency demodulation is used in our work, which enhances the sensitivity and resolution. It also provides a potential way for high-speed demodulation. Moreover, the sensing head is a conventional FBG without any elaborate transducer, which enables the features of simple structure, easy fabrication, and compact size.
Optical fiber sensors based on Michelson interferometers (MIs) have potential applications in condition monitoring and measurement systems. We propose an optoelectronic oscillator (OEO)-based interrogation system with MI. The interrogation system has a high interrogation resolution and large measurement scale. The sinusoidal nature of the MI spectrum results in a single-passband microwave photonic filter (MPF), whose central frequency is determined by the dispersion parameters of the employed dispersive element and the free spectral range (FSR) of the MI. When the external environmental or physical factors change, the FSR of the MI varies and leads to the frequency shift o f the MPF, ultimately contributing to the frequency shift of the OEO-generated signal. We verify that the variation of temperature and strain can be demodulated by tracking the frequency of the OEO. We also employ an infinite impulse response (IIR)- MPF based on a fiber ring resonator (FRR) for fine oscillation mode selection and evaluate the interrogation resolution and the measurement accuracy of the interrogation system. Different from conventional interrogation systems tracking the wavelength shift of the MI spectrum, our scheme demodulates the sensing information in the electrical domain utilizing an OEO, providing a potential way to implement high-resolution sensing for conventional optical fiber sensors. Moreover, thanks to the wavelength-to-frequency mapping and the wide frequency tunable range of the OEO, our scheme would support large-scale sensing because it can avoid the overlap of MI periodic spectrum in wavelength demodulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.