Wavefront coding enables conventional optical imaging systems to operate over an extended depth of field/focus by modifying the light field using a specially designed phase mask. Different phase masks can be used to alter the transmitted wavefront of the optical system which may result in different performances in terms of the capability of the depth-of-focus extension, aberration suppression and the process of imaging acquirement. In this paper, we present a comparative study on the performances of two major different categories of the phase mask, i.e., rotational symmetric and asymmetric type phase masks. Three different types of phase masks that are of cubic, quartic, and logarithmic phase profile are investigated. Fabrication and metrology of a cubic mask is conducted and a full cycle of imaging process including the image coding and decoding is performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.