Proceedings Article | 22 February 2008
Proc. SPIE. 6622, International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology
KEYWORDS: Stars, Computing systems, Computer simulations, Star sensors, Monte Carlo methods, LCDs, Image sensors, Data processing, Space operations, Device simulation
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process
with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job,
requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And
moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in
laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the
model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor
and the central data processing computer. The test system simulates the starlight with high accuracy and good
parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to
observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and
Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time,
attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the
testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to
optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.