Meta-Fibers, which incorporate 3D-printed Metalens into optical fiber facets, are versatile technology with applications in imaging, optical trapping, and electromagnetic wave manipulation. Single-Mode Fiber (SMF) stands out for its defined output, but its limited mode field diameter poses a challenge, often requiring fusion splicing with Multi-Mode Fiber (MMF) or a 3D-printed structure to expand SMF's usable cross-section. However, these methods are complex and may damage the Meta-Fiber. This study introduces an alternative, replacing SMF with Thermally Expanded Core (TEC) fiber, featuring a significantly larger mode field diameter. This approach enables optical trapping and imaging via 3D laser-printed ultra-high numerical aperture metalens into TEC fibers, functioning effectively in diverse environments. The findings expand Meta-Fiber applications, providing an efficient, robust, and scalable solution for optical wavefront manipulation, highlighting the potential of TEC fibers in optics and photonics technology.
Hollow-core waveguides represent a promising type of on-chip waveguide, enabling strong light-matter interactions for guiding light directly in the medium of interest. Hollow-core waveguides are very established in fiber optics, while they receive much less attention in on-chip photonics.
Here, we will show how 3D nanoprinting is used to transfer hollow-core waveguide concepts from fiber optics to on-chip photonics. Two main types of nanoprinted waveguides are discussed, yielding a high-power fraction in the core and lateral access to the core region. We will explain applications of these waveguides in gas- and water-based spectroscopy, nanoparticle tracking analysis and optical fiber interconnection.
The integration of metasurfaces onto the end faces of optical fibers holds great promise for numerous applications. Traditional top-down fabrication struggles with optical fiber geometry. Our presentation reveals a solution: 3D nanoprinting via direct laser writing to create nanopillar metasurfaces on fiber end faces. This concept gives rise to a novel kind of fiber devices called meta-fibers, allowing for shaping the fiber's output properties. We showcase two applications: (i) achromatic fiber-interfaced metasurface lenses covering the entire telecommunication range, and (ii) meta-fibers generating structured light. These meta-fibers utilize dielectric nanopillars of varying heights, a capability unique to the nanoprinting process.
On-chip hollow-core waveguides represent a promising platform for microfluidic analysis, nonlinear optics and quantum information processing, due to light guidance directly inside the medium of interest. Recently, we have introduced two types of 3D nanoprinted on-chip hollow-core waveguides, namely the hollow-core light cage and the microgap waveguide which have unique properties for on-chip sensing. Here we will present our results for water-based spectroscopy, refractive index sensing, nanoparticle tracking, and optical fiber interfacing.
On-chip hollow-core waveguides represent a promising platform for microfluidic analysis, nonlinear optics and quantum information processing, due to light guidance directly inside the medium of interest. Recently, we have reported a 3D printed hollow-core waveguide ⎯ light cage ⎯ which consists of a ring of high-aspect-ratio cylinders and combines a high fraction of field in the core (>99%) with transverse access. Here we will discuss our results on interfacing light cages with optical fibers, the measurement of electromagnetically induced transparency within light cages filled with alkali vapour, the potential of the light cage concept for spectroscopy and nanoparticle tracking analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.