KEYWORDS: Vegetation, 3D modeling, Visualization, Eye, Eye models, 3D image processing, Transparency, Motion models, Visual process modeling, Systems modeling
Rendering of detailed vegetation for real-time applications has always been difficult because of the high polygon count in 3D models. Generating correctly warped images for nonplanar projection surfaces often requires even higher degrees of tessellation. Generating left and right eye views for stereo would further reduce the frame rate since information for one eye view cannot be used to redraw the vegetation for the other eye view. We describe an image based rendering approach that is a modification fo an algorithm for monoscopic rendering of vegetation proposed by Aleks Jakulin. The Jakulin algorithm pre-renders vegetation models from 6 viewpoints; rendering from an arbitrary viewpoint is achieved by compositing the nearest two slicings. Slices are alpha blended as the user changes viewing positions. The blending produces visual artifacts that are not distracting in a monoscopic environment but are very distracting in a stereo environment. We have modified the algorithm so it displays all pre-rendered images simultaneously and slicings are partitioned and rendered in a back-to-front order. This approach improves the quality of the stereo, maintains the basic appearance of the vegetation and reduces visual artifacts but it increases rendering time slightly and produces a rendering that is not totally faithful to the original vegetation model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.