The performance of different MEMS mirrors from Boston University, MEMS Optical LLC, University of Colorado and OKO Technologies was studied in respect to an application in a model-free adaptive optics system. The frequency response characteristic was determined in a simple laser beam focusing set-up. Closed-loop adaptation experiments were performed using a VLSI controller system implementing a stochastic parallel gradient descent optimization algorithm. The system behavior using different MEMS mirror types, esp. adaptation speed, was compared.
Using two micro lens arrays and a MEMS micro shutter array, an intensity modulating Spatial Light Modulator is being developed at MEMS Optical, Inc. (patent pending) for high speed printing applications. The micro lens arrays are used to focus incident light to a point and then expand it back to its original size. At the focus point, a Foucault micro shutter array is used to modulate the amount of light allowed to pass through the aperture. The purpose for this device is for exposure control for high-speed electronic printing applications. The drive mechanism is based on an electrostatic lateral comb interdigitated drive. Design analysis shows a rise time of 1 - 2 microseconds for high voltage systems. This array of shutters is being implemented in a CMOS compatible process, and is capable of being integrated with on chip circuitry for opening and closing the shutters. The apertures are made using deep RIE etching, and the shutters are released using plasma etching. The result is an electronically controlled method of exposing a photosensitive surface at high speeds for the printing industry, with or without lasers.
Image segmentation is one of the major application areas for Pulsed Coupled Neural Networks (PCNN). Previous research has shown that the ability of PCNN to ignore minor variations in intensity and small spatial discontinuities in images is beneficial to image segmentation as well as image smoothing. This paper describes research and development projects in progress in which PCNN is used for the segmentation of three different types of digital images. The software for the diagnosis of Pulmonary Embolism from VQ lung scans uses PCNN in single burst mode for segmenting perfusion and ventilation images. The second project is attempting to detect ischemia by comparing 3D SPECT (Single Photon Emission Computed Tomography) images of heart obtained during stress and rest conditions, respectively. The third application is a space science project which deals with the study of global auroral images obtained from Ultraviolet Imager. The paper also describes an hardware implementation of PCNN as an electro-optical chip.
Pulse Coupled Neural Networks have been extended and modified to suit image segmentation applications. Previous research demonstrated the ability of a PCNN to ignore noisy variations in intensity and small spatial discontinuities in images that prove beneficial to image segmentation and image smoothing. This paper describes four research and development projects that relate to PCNN segmentation - three different signal processing applications and a CMOS integrated circuit implementation. The software for the diagnosis of Pulmonary Embolism from VQ lung scans uses PCNN in single burst mode for segmenting perfusion and ventilation images. The second project is attempting to detect ischemia by comparing 3D SPECT images of the heart obtained during stress and rest conditions, respectively. The third application is a space science project which deals with the study of global aurora images obtained from UV Imager. The paper also describes the hardware implementation of PCNN algorithm as an electro-optical chip.
This paper discusses the application of MOEM technology to adaptive optics. An experiment is described in which a micromachined mirror array is used in a closed loop adaptive optic demonstration. An interferometer wavefront sensor is used for wavefront sensing. Parallel analog electronics are used for the wavefront reconstruction. Parallel operational amplifiers are used to drive the micromirrors. The actuators utilize a novel silicon design developed by SY Technology, Inc. The actuators have a measured frequency response of 15kHz, and a maximum usable stroke of 4 microns. The entire adaptive optic demonstration has a bandwidth exceeding 10kHz. Measured performance is described. The experiments conducted are designed to explore the feasibility of creating a single chip adaptive optic system, also described in this paper. This chip would combine all on a single VLSI chip aspects of a complete adaptive optics system, wavefront sensing, wavefront reconstruction, and wavefront correction. The wavefront sensing would be accomplished with a novel compact shearing interferometer design. The analog refractive and diffractive micro optics will be fabricated using a new single step analog mask technology. The reconstruction circuit would use an analog resistive grid solver. The resistive grid would be fabricated in polysilicon. The drive circuits and micromirror actuators would use standard CMOS silicon fabrication methods.
This paper discusses the development of an optically addressed smart pixel spatial light modulator (SLM). The term 'smart pixel' refers to the ability to modulate the phase of a read beam with greater than eight phase levels. The modulation is a function of the output of four photoactive sites per pixel. In this design the four photoactive sights surround a modulator element and are addressed by four independent write beams. The modulator is controlled by the output of a circuit connected to the photodetectors. A novel addressing scheme which utilizes diffractive microlens arrays is also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.