KEYWORDS: Image segmentation, Visualization, Volume rendering, 3D modeling, Medical imaging, Data modeling, Tumors, Brain, 3D image processing, Neuroimaging
This paper presents a method that can extract and visualize anatomical structures from volumetric medical images by
using a 3D level set segmentation method and a hybrid volume rendering technique. First, the segmentation using the
level set method was conducted through a surface evolution framework based on the geometric variation principle. This
approach addresses the topological changes in the deformable surface by using the geometric integral measures and level
set theory. These integral measures contain a robust alignment term, an active region term, and a mean curvature term.
By using the level set method with a new hybrid speed function derived from the geometric integral measures, the
accurate deformable surface can be extracted from a volumetric medical data set. Second, we employed a hybrid volume
rendering approach to visualize the extracted deformable structures. Our method combines indirect and direct volume
rendering techniques. Segmented objects within the data set are rendered locally by surface rendering on an object-by-object
basis. Globally, all the results of subsequent object rendering are obtained by direct volume rendering (DVR).
Then the two rendered results are finally combined in a merging step. This is especially useful when inner structures
should be visualized together with semi-transparent outer parts. This merging step is similar to the focus-plus-context
approach known from information visualization. Finally, we verified the accuracy and robustness of the proposed
segmentation method for various medical volume images. The volume rendering results of segmented 3D objects show
that our proposed method can accurately extract and visualize human organs from various multimodality medical volume
images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.