Advanced Inverse Lithography Technology (ILT) can result in mask post-OPC databases with very small address units, all-angle figures, and very high vertex counts. This creates mask inspection issues for existing mask inspection database rendering. These issues include: large data volumes, low transfer rate, long data preparation times, slow inspection throughput, and marginal rendering accuracy leading to high false detections. This paper demonstrates the application of a new rendering method including a new OASIS-like mask inspection format, new high-speed rendering algorithms, and related hardware to meet the inspection challenges posed by Advanced ILT masks.
It is now well established that extremely ultraviolet (EUV) mask multilayer roughness can lead to wafer-plane line-edge roughness (LER) in lithography tools. It is also evident that this same effect leads to sensor plane variability in inspection tools. This is true for both patterned mask and mask blank inspection. Here we evaluate mask roughness specifications explicitly from the actinic inspection perspective. The mask roughness requirement resulting from this analysis are consistent with previously described requirements based on lithographic LER. In addition to model-based analysis, we also consider the characterization of multilayer mask roughness and evaluate the validity of using atomic force microscopy (AFM) based measurements by direct comparison to EUV scatterometry measurements as well as aerial image measurements on a series of high quality EUV masks. The results demonstrate a significant discrepancy between AFM results and true EUV roughness as measured by actinic scattering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.