KEYWORDS: Clouds, LIDAR, Detection and tracking algorithms, Data modeling, Algorithm development, Data acquisition, Sensors, Visualization, Object recognition, C++
The ability to rapidly assess damage to military infrastructure after an attack is the object of ongoing research. In the case
of runways, sensor systems capable of detecting and locating craters, spall, unexploded ordinance, and debris are necessary
to quickly and efficiently deploy assets to restore a minimum airfield operating surface. We describe measurements
performed using two commercial, robotic scanning LiDAR systems during a round of testing at an airfield. The LiDARs
were used to acquire baseline data and to conduct scans after two rounds of demolition and placement of artifacts for the
entire runway. Configuration of the LiDAR systems was sub-optimal due to availability of only two platforms for
placement of sensors on the same side of the runway. Nevertheless, results prove that the spatial resolution, accuracy, and
cadence of the sensors is sufficient to develop point cloud representations of the runway sufficient to distinguish craters,
debris and most UXO. Location of a complementary set of sensors on the opposite side of the runway would alleviate the
observed shadowing, increase the density of the registered point cloud, and likely allow detection of smaller artifacts.
Importantly, the synoptic data acquired by these static LiDAR sensors is dense enough to allow registration (fusion) with
the smaller, denser, targeted point cloud data acquired at close range by unmanned aerial systems. The paper will also
discuss point cloud manipulation and 3D object recognition algorithms that the team is developing for automatic detection
and geolocation of damage and objects of interest.
KEYWORDS: Optical filters, Sensors, Polarizers, Imaging systems, Signal to noise ratio, Staring arrays, Code v, RGB color model, Modeling and simulation, Linear polarizers
A new, economical, lenslet-array-based imaging sensor design is proposed, simulated, and analyzed. In this investigation a bare lenslet array model is first developed in Code V®. The results show that, as expected, intolerable optical cross-talk is present in this simple system. This problem has been addressed in previous systems via the inclusion of a physical image separation layer. The alternative system proposed here to alleviate crosstalk involves the introduction of both polarizers and spectral filters. As a consequence this simple system design also provides spectro-polarimetric resolution. Simulations were developed in order to analyze the system performance of two designs. The simulation results were analyzed in terms of a measure of signal-to-noise ratio (SNR) and in terms of an en-squared energy that includes all subimages. The results show that a design employing only a few spectral filters suppresses crosstalk for objects of small angular extent but does not suppress crosstalk to a tolerable level for 2π steradian illumination, as evidenced by SNR less than one. However, the inclusion of more spectral filters results in a spectro-polarimetric thin imager design that suppresses crosstalk and provides finer spectral resolution without the inclusion of a signal separation layer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.