We have investigated self-aligned resist patterning for a patterning accuracy of photo mask. Self-aligned resist
pattern can be formed by backside flood exposure on photo-mask. It had been already proved by the experiments with
248 nm light source exposure on binary (Cr on Quartz) and KrF attenuated phase shift masks. Attenuated phase shift
masks are generally composed of Cr/MoSiN/Quartz, MoSiN/Quartz, and Quartz layers. MoSiN layers of attenuated
phase shift mask have the optical property of 6% transmittance at 248 nm light source, and the interference of the 6%-
transmitted light makes the undesirable resist pattern profile on MoSiN-Quartz boundary. This paper shows the fresh
possibility of the self-aligned resist pattern fabrication on attenuated phase shift masks using backside flood exposure. To
solve the optical property of MoSiN layer, self-aligned resist patterns of KrF attenuated phase shift mask was fabricated
using 193 nm wavelength backside flood exposure and ArF attenuated phase shift mask used 172 nm wavelength. The
shorter wavelength than generally applied wavelength could minimize transmittance on MoSiN area. Besides we used
Negative PR to make the self-aligned resist pattern on exposed regions. These experimental concepts help to form the
selective PR patterning on only quartz regions of attenuated phase shift mask.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.