In this paper we present a high power, polarized 2 μm Thulium-doped fiber laser with high beam quality. Such laser systems are ideally suited for the processing of plastic materials which are highly transparent in the visible and 1 μm wavelength range and for the pumping of laser sources for the mid-IR wavelength region. For most applications polarized lasers are beneficial, as they can be easily protected from back reflections and combined with other laser sources or power scaled by polarization combining. The Tm-doped fiber laser is pumped in an all-fiber configuration by using a fiber coupled pump diode emitting around 790 nm. This pumping scheme allows the exploitation of the crossrelaxation process to populate the upper laser level.
A compact and robust laser configuration was achieved by using an all-fiber configuration with single mode fibers and fiber Bragg gratings (FBG). Different FBG pairs with wavelength around 2 μm were tested. To achieve stable polarized output power the fibers with the FBG were 90° twisted at the splices. Stable linearly polarized output power up to 38 W with an extinction ratio of up to 50:1 was observed. With respect to the diode output power an optical-to-optical efficiency of 51 % was reached with a correspondent slope efficiency of 52 %. The emission linewidth at maximum power was measured to be < 0.3 nm which is well suitable for Ho-laser pumping. First tests of the precise processing of highly transparent plastic materials demonstrate the potentials of these laser systems.
The (AlGaIn)(AsSb) material system has been shown to be ideally suited to realize VECSELs for the 2-3 μm wavelength range. In this report we will present results on increasing the output power of the SDL chips with special emphasis on the 2.8 μm emission wavelength by means of low quantum defect pumping. Further on we have investigated concepts for a VECSEL-pumped Q-switched Ho:YAG laser in order to convert the high cw-power of the VECSEL into pulses with a high peak power. Up to 3.3 mJ of pulse energy were achieved with a compact setup (corresponding to a peak power of 30 kW at 110 ns pulse length) combined with stable pulsing behavior.
Spectral beam combining of Tm-doped fiber lasers can increase the laser output power while simultaneously maintaining the single mode beam quality. We report on a spectral beam combining technique based on highly efficient in-housemade WDM cascade. We demonstrate continuous wave power combining employing a WDM cascade consisting of four fiber laser sources with emission wavelengths of 1920, 1949, 1996 and 2030 nm. A combined power of up to 38 W resulted in a combining efficiency of 69%.