Proceedings Article | 9 July 2008
Proc. SPIE. 7017, Modeling, Systems Engineering, and Project Management for Astronomy III
KEYWORDS: Sensors, Calibration, Manufacturing, Fourier transforms, Amplifiers, Receivers, Antennas, Radio astronomy, Cryogenics, Double sideband modulation
The NRC Herzberg Institute of Astrophysics (NRC-HIA) is currently responsible to contribute Band 3 (84-116 GHz)
receivers to the international ALMA project - a partnership involving North America, Europe and, now, Asia. Not only
are the technical requirements for these receivers far more stringent than those for any existing radio astronomy receivers
operating at these frequencies, but the delivery schedule for these receivers is equally challenging. Since the Asian
partnership joined the ALMA project in 2006, NRC-HIA has been asked to deliver an additional 11 cartridges, for a total
of 73 units. Some of these new cartridges will be used for the ALMA Compact Array (ACA) and others as spares.
Moreover, the project has also requested that these additional cartridges be delivered in the same time period as the
original 62 units. To meet this requirement, production must increase from the existing rate of one unit every four weeks
to one every two, taxing the existing production infrastructure at NRC-HIA. Additional test facilities and human
resources must be planned to sustain the required production rate over the next several years. Industrial involvement is
one of the important elements in our production plan. In order to supplement the existing human resources at NRC-HIA,
we are planning to outsource a number of low-risk and labor-intensive tasks to industry. However, NRC-HIA will retain
overall project management responsibility and will conduct all the cartridge integration and acceptance test activities in-house.
This paper focuses on the resource estimation, planning and project management required to deliver the Band 3
receivers to the ALMA project on time and on budget.