Laboratory x-ray fluorescence (XRF) computed tomography (XFCT) with nanoparticles (NPs) as contrast agents now allows for in vivo preclinical imaging and longitudinal studies at low radiation dose. We present on developments of our XFCT arrangement capable of low-dose (<25 mGy) imaging with high signal-to-background resulting in high-spatial-resolution (200-400 μm) in vivo imaging of Ru, Rh and Mo NPs injected and accumulated locally in mice. We further demonstrate multiplexing capabilities by cross-talk-free separation of Ru, Rh and Mo XRF signal as well as envisioning the future of preclinical XFCT for active targeting and imaging of molecular markers (e.g., cancer cells).
X-ray fluorescence computed tomography (XFCT) with nanoparticles (NPs) as contrast agents has reached technical maturity allowing for in vivo preclinical imaging in the laboratory setting. We present the first in vivo longitudinal study with XFCT where mice were 5 times each during an 8-week period. Imaging is performed with low radiation dose (<25 mGy) and high signal-to-background for high-spatial-resolution imaging (200-400 µm) of molybdenum NP accumulations (down to ~50 µg/ml Mo). We further discuss our ongoing development of protein-coated NPs for actively targeting molecular markers (e.g., cancer), as well as potential clinical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.