The rare earth-doped active fibers owning ten thousands of square-micron core-area but also delivering laser with high beam quality have little been reported. In this paper, we have designed a large-mode-area Yb3+-doped photonic crystal fiber in the cladding region with square-array air holes. Simulations demonstrate that only fundamental mode (FM) with mode-field-area (MFA) of ~15500 μm2 can be amplified and propagated at the gain saturation, and the beam quality M2 is less than 1.5. It is predicted that almost 58 mJ per-pulse can be available from such a 1.0 meter-length fiber, and the beam shape of amplified laser is near squared. It will be potential for so huge pulse-energy output from the VLMA LPF to be applied in the remote detecting, high-intensive welding and so on.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.