Spin-on dielectric (SOD) is widely used in semiconductor industry, to form insulating layers including shallow trench isolation (STI) or inter-layer dielectrics (ILD). SOD has several advantages over high density plasma chemical vapor deposition (HDP-CVD) for manufacturing process, such as less defect and higher throughput. However, both SOD and HDP-CVD have a drawback, which is a high temperature curing process required to make pure silicon oxide layers. High temperature curing could cause high stress and thermal distortion. These disadvantages are becoming more problematic as the semiconductor device shrinks. To resolve the problem, we tested several additives to moderate the curing temperature. It was found out that amine compounds were effective to convert SOD polymer into silicon oxide, therefore the curing process could be performed at a lower temperature. We also observed that the SOD films containing amine additives have higher etch resistance during a wet etch process. These results, as well as the lower curing temperature, are beneficial for manufacturing insulating layers. Further investigation is ongoing to characterize other film properties of the SOD with additives, and to optimize the formulation conditions according to the requirements of manufacturing processes.
In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a
widely used material because of its excellent gap-fill, efficient throughput on mass production and highly competitive
initial cost of ownership. Among various semiconductor applications, SOD is especially valued as the suitable gap-fill
material for shallow trench isolation (STI), because the previously adopted technology, high density plasma chemical
vapor deposition (HDP-CVD), has a significant problem with void-free gap-fill on patterns with high aspect ratios. As
SOD is spin-coated on those narrow patterns, planarization is one of the important requirements. On the course of our
efforts on developing novel modified SOD materials, we discovered that the reactivity of each SOD resins has
meaningful correlation with the degree of planarization. In this paper, three experiments have been illustrated to prove
this correlation, 1) step coverage test, 2) humid air bubble test, and 3) film thickness shrinkage upon prebake. The SOD
resin with lower reactivity turned out to exhibit 1) larger size of circle around silica-beads, 2) slower molecular weight
growth under humid bubble condition, and 3) higher shrinkage upon prebake.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.