Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility and a moderate band gap (~1.5 eV for multilayer crystals), which holds promise for high-speed optoelectronics and energy conversion. Here, we use time resolved THz spectroscopy to investigate how intercalation of Au, Cu, and Sn impacts the photoexcited carrier dynamics and transient photoconductivity of GeS nanoribbons. We find that zero-valent metals affect the photoexcited carrier lifetime and mobility in different ways. Intercalation of GeS with Cu reduces the lifetime of carriers from ~ 120 ps to 60 ps, while Au and Sn intercalation do not. At the same time, intercalation with Cu, Sn and Au significantly enhances the scattering time of photoexcited carriers (~120 fs vs ~65 fs without intercalation), highlighting the potential of zero-valent metal intercalation as a tool for engineering the optoelectronic properties of GeS nanostructures for application in high-speed electronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.