Ship detection in synthetic aperture radar (SAR) images plays an important role in remote sensing, but it is still full of challenges in the deep learning area. The primary problem is that ships in SAR images have different sizes and orientations. The off-the-shelf detectors are not able to adapt to the situation. Recurrent feature pyramid networks are presented to detect ships with different sizes especially the small ones. Rotatable region proposal network is used for locating ships with a tighter rectangle. Rotatable anchors with sizes, aspect ratios, and angles are designed according to the distribution of ships in dataset. Multiratio region-of-interest pooling is used for projecting arbitrary-oriented proposals to fixed length vectors. Angle-related intersection-of-unit (ArIoU) is used for evaluating the intersection of rotatable proposals. ArIoU can be an indicator for nonmaximum suppression (NMS) and also is used for preparing negative and positive proposals. A loss function is proposed to compute loss between bounding boxes. The sinusoidal function is used for solving the problem of unstable angle. We also use a dataset called SSDD+ (SAR ship detection dataset plus) to evaluate different methods. Experiments based on SSDD+ show that our method achieves state-of-the-art performance. The dataset and the code will be public at https://zhuanlan.zhihu.com/p/143794468.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.