Proceedings Article | 15 October 2012
Proc. SPIE. 8415, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes
KEYWORDS: Liquid crystals, Adaptive optics, Telescopes, Wavefronts, Astronomical telescopes, Stars, Liquid crystal on silicon, Atmospheric turbulence, Phase modulation, LCDs
In this paper, the advances in liquid crystal adaptive optics system (LC AOS) are presented for Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP, CAS). The LC AOS has two bottlenecks of low energy utilization ratio and slow correction frequency. To solve these problems, a series of effective methods were utilized by the LC AOS working group. The problem of energy utilization ratio was solved and the energy utilization ratio was improved from 5% to 85%, which was similar to the deformable mirror based AOSs. Furthermore, the correction frequency of the LC AOS was also greatly improved from 5Hz to 140Hz, which is closed to the ability of correction the atmospheric turbulence. According to these research results, two LC AOSs, which correspond to a 2.16 meter Telescope (located at Xinglong Station of Beijing Astronomical Observatory) and a 1.2 meter telescope (located at CIOMP, CAS), were designed and fabricated. By using these LC AOSs, the star was observed with adaptive correction and the correction is effective. At last, the resolution ability of the star is up to 1.7 times of the diffraction limitation for the 1.2 meter telescope.