Hybrid metrology is a promising approach to access to the critical dimensions of line gratings with precisions. The objective of this work is about using artificial intelligence (AI), mainly artificial neural network (ANN) to improve metrology at nanoscale characterization by hybridization of several techniques. Namely, optical critical dimension (OCD) or scatterometry, CD–Scanning electron microscopy (CDSEM), CD–Atomic force microscopy (CDAFM) and CD–Small angle x-rays scattering (CDSAXS). With virtual data of tabular–type generated by modelling, the ANN is able to predict the geometrical parameters compared to true measured values with high accuracies and detect irregularities in input data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.