The design and construction of CARMENES has been presented at previous SPIE conferences. It is a next-generation radial-velocity instrument at the 3.5m telescope of the Calar Alto Observatory, which was built by a consortium of eleven Spanish and German institutions. CARMENES consists of two separate échelle spectrographs covering the wavelength range from 0.52 to 1.71μm at a spec-tral resolution of R < 80,000, fed by fibers from the Cassegrain focus of the telescope. CARMENES saw “First Light” on Nov 9, 2015.
During the commissioning and initial operation phases, we established basic performance data such as throughput and spectral resolution. We found that our hollow-cathode lamps are suitable for precise wavelength calibration, but their spectra contain a number of lines of neon or argon that are so bright that the lamps cannot be used in simultaneous exposures with stars. We have therefore adopted a calibration procedure that uses simultaneous star / Fabry Pérot etalon exposures in combination with a cross-calibration between the etalons and hollow-cathode lamps during daytime. With this strategy it has been possible to achieve 1-2 m/s precision in the visible and 5-10 m/s precision in the near-IR; further improvements are expected from ongoing work on temperature control, calibration procedures and data reduction. Comparing the RV precision achieved in different wavelength bands, we find a “sweet spot” between 0.7 and 0.8μm, where deep TiO bands provide rich RV information in mid-M dwarfs. This is in contrast to our pre-survey models, which predicted comparatively better performance in the near-IR around 1μm, and explains in part why our near-IR RVs do not reach the same precision level as those taken with the visible spectrograph.
We are now conducting a large survey of 340 nearby M dwarfs (with an average distance of only 12pc), with the goal of finding terrestrial planets in their habitable zones. We have detected the signatures of several previously known or suspected planets and also discovered several new planets. We find that the radial velocity periodograms of many M dwarfs show several significant peaks. The development of robust methods to distinguish planet signatures from activity-induced radial velocity jitter is therefore among our priorities.
Due to its large wavelength coverage, the CARMENES survey is generating a unique data set for studies of M star atmospheres, rotation, and activity. The spectra cover important diagnostic lines for activity (H alpha, Na I D1 and D2, and the Ca II infrared triplet), as well as FeH lines, from which the magnetic field can be inferred. Correlating the time series of these features with each other, and with wavelength-dependent radial velocities, provides excellent handles for the discrimination between planetary companions and stellar radial velocity jitter. These data are also generating new insight into the physical properties of M dwarf atmospheres, and the impact of activity and flares on the habitability of M star planets.
The CARMENES instrument is a pair of high-resolution (R⪆80,000) spectrographs covering the wavelength range from 0.52 to 1.71 μm, optimized for precise radial velocity measurements. It was installed and commissioned at the 3.5m telescope of the Calar Alto observatory in Southern Spain in 2015. The first large science program of CARMENES is a survey of ~ 300 M dwarfs, which started on Jan 1, 2016. We present an overview of all subsystems of CARMENES (front end, fiber system, visible-light spectrograph, near-infrared spectrograph, calibration units, etalons, facility control, interlock system, instrument control system, data reduction pipeline, data flow, and archive), and give an overview of the assembly, integration, verification, and commissioning phases of the project. We show initial results and discuss further plans for the scientific use of CARMENES.
Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.
Hollow cathode lamps of U and Th are the standard frequency calibrators in astronomical spectrographs. In an effort to
optimize precision radial velocity measurements at near-IR wavelengths for the CARMENES survey, we are
characterizing 12 commercial U-Ne hollow cathode lamps using a high resolution Fourier Transform Spectrograph and
an InGaAs detector to analyze the wavelength range between 950 and 1700 nm. We have recorded spectral atlases of UNe
operated at 8, 10 and 12 mA, which are typical values used at astronomical observatories in order to maximize lamp
lifetimes. In addition to the spectral atlas, we analyze properties like warm-up times, average intensities from lines of
different elements, positions and the width of emission lines, and blends. None of our lamps show strong peculiarities in
the spectra or significant contamination. The identification of the uranium lines is based on the line widths and consistent
with the Redman et al. (2011) catalog. Our line list can add a significant number of lines particularly in the range around
9000 cm-1 (1.1 μm) where the catalog is incomplete because of limited detector sensitivity. We are able to identify the elements emitting additional lines by measuring the line width. The increased number of U lines at wavelengths relevant
to radial velocity surveys can yield a significant improvement in the accuracy of radial velocity measurements.
This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it
during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths
with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument
under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish
and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting
~ 300 M dwarfs with the completed instrument.
The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range
from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope.
The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to
enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with
a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the
most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been
optimized in this range.
The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for
the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm.
Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one
for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector,
to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera;
on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to
ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated
to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coud´e
laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable
of keeping the temperature constant to within ±0.01°C over 24 hours. The visible-light spectrograph will be
operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K.
The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently
ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned
for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the
CARMENES survey in the time frame until 2018.
A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can
be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that
are not available in the literature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.