Chemical threat detection has long been of interest to military, law enforcement, environmental agencies, and forensic investigators. Recently, as the propensity for both foreign and homegrown terrorism, illegal drug manufacture, and concern for environmental regulation continues to grow, the demand for rapid, portable chemical threat detection capabilities has increased dramatically. In particular, the ability to identify chemical threats (explosives, narcotics, toxic industrial chemicals, etc.) at a distance (standoff) is of special interest as it increases the safety of the end user during interrogation. Traditional analytical laboratory techniques such as high-performance liquid chromatography or gas chromatography coupled with mass spectrometry offer excellent sensitivity for detection and identification of trace amounts of threatening material. However, these techniques often lack the portability necessary for remote on-site interrogation as samples must be physically collected and brought to a laboratory for analysis. Vibrational spectroscopic techniques offer both the chemical identification and miniaturization capabilities required for portable, on-site chemical threat detection. Most importantly, spectroscopic techniques are inherently and uniquely standoff, where emitted or scattered photons are collected at some distance from the sample. The challenge then becomes miniaturizing the instrumentation while maximizing the distance at which accurate chemical detection can be made. Here we report on portable chemical threat detection instrumentation developed by Alakai Defense Systems, which employs deep ultra-violet Raman spectroscopy. We discuss the general system aspects such as basic optical design and ambient light rejection techniques. We also present data on the performance capabilities using several substances including actual narcotics and other compounds commonly used as cutting agents. Lastly, we discuss possible future directions including the ability for rapid spectroscopy while maintaining high photon detection sensitivity by employing an intensified scientific CMOS (sCMOS) and the propensity for NIR standoff Raman detection using deep-depletion CCD technology.
A calibration model was created to illustrate the detection capabilities of laser ablation molecular isotopic spectroscopy (LAMIS) discrimination in isotopic analysis. The sample set contained boric acid pellets that varied in isotopic concentrations of 10B and 11B. Each sample set was interrogated with a Q-switched Nd:YAG ablation laser operating at 532 nm. A minimum of four band heads of the β system B2∑ → Χ2∑transitions were identified and verified with previous literature on BO molecular emission lines. Isotopic shifts were observed in the spectra for each transition and used as the predictors in the calibration model. The spectra along with their respective 10/11B isotopic ratios were analyzed using Partial Least Squares Regression (PLSR). An IUPAC novel approach for determining a multivariate Limit of Detection (LOD) interval was used to predict the detection of the desired isotopic ratios. The predicted multivariate LOD is dependent on the variation of the instrumental signal and other composites in the calibration model space.
Alakai Defense Systems has created two new short range UV Raman standoff explosive detection sensors. These are called the Critical Infrastructure Protection System (CIPS) and Portable Raman Improvised Explosive Detection System (PRIED) and work at standoff ranges of 10cm and 1-10m respectively. Both these systems are designed to detect neartrace quantities of explosives and Homemade Explosives. A short description of the instruments, design trades, and CONOPS of each design is presented. Data includes a wide variety of explosives, precursors, TIC/TIM’s, narcotics, and CWA simulants
Proceedings Volume Editor (7)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.