This paper proposed a novel pressure sensors based on polymer film with surface microstructures. Polymer film with surface microstructures have displayed unique optoelectronic and electrical properties due to the triboelectric effect. The micro-deformation and moving of polymer microstructures can product electrostatic charge. The pressure sensors can convert external pressure or mechanical deformation into electrical signal. The pressure sensor consists of one polymer film with surface microstructures and one conductive electrode layer. The regular microstructures increase the film roughness and contact triboelectric area to enhance the electrostatic effect. To enhance the performance of the pressure sensor, high-precision microstructures on soft polymer sensitive layers are fabricated using UV nanoimprint lithography to generate more triboelectric charges. The pressure sensor is prepared, which consists of grating with 3 μm- period on the surface of the elastic layer and an indium tin oxide electrode thin film. By converting the friction mechanical energy into electrical power, a maximum power of 423.8 mW/m2 and the sensitivity of 0.7 V/kPa at a frequency of 5 Hz are obtained, which proves the excellent sensing performance of the sensor.
An investigation on hybrid graphene-metal structure patch antenna has been carried out in the presented paper. The microwave radiation performance of the antenna is controlled by the optical tuning characteristic of graphene. The surface conductivity of graphene is changed, when variation of chemical potential is happened which can be regulated by an exterior light field. With simulations, the S11 coefficient of antenna is changed with a maximum of 32.2 dB when the chemical potential of graphene varies from 0 eV to 1 eV. The effect of different structure parameters, such as metal radiating patch sizes and graphene film widths, on the S11 coefficient in the graphene based antenna is further analyzed by simulations. With experiments, the measured S11 coefficient decreases gradually with optical intensity increases when using communication light with the wavelength of 1550 nm as modulation light. When the optical intensity of the communication light varieties from 0 mW to 25 mW, the S11 coefficient of the microwave is changed from -18.7 dB to -19 dB and the modulation depth is 0.3 dB. The results demonstrate the proposed method is a good candidate for modulating microwave directly by communication light.
High resolution and high precision polymer nanostructures has unique chemical and physical properties, playing an important role in nano-optics, nano-photonics, and high sensitivity biological detection. This paper demonstrated a novel fabrication method of biological detection chip based on polymer nanostructures via nanoimprint lithography. High precision nanostructures such as nanopillar arrays were prepared on chip film via nanoimprint lithography. The polymer nanostructures were used to enhance adhesion to cancer cells, which is low-cost and suitable for mass production. The replication polymer was biocompatibility materials that has no effect on cells. The experiment results show that the nanopillar arrays chip can adhere lung cancer cells in the size of 10-15 μm to achieve the purpose of filtering and detecting cells. Results of the experiments show that this new biological detection chip has potential applications of cancer detection, targeted therapy, food safety testing, and environmental monitoring.
To enhance the modulation of the terahertz wave in graphene based modulators, the hollow metallic structures are proposed in our works. With the field localization and enhancement raised by the resonant of the hollow metallic structures, the interaction between the graphene and the terahertz wave is enhanced. It leads to the modulation enhanced when the conductance of graphene is tuned by applied voltage. The samples with hollow square ring array structure and hollow H-cross array structure is discussed with simulations and experiments. The results indicate that the maximum modulation enhancement is achieved near the resonant frequencies.
Bionic compound eye optical element composed of multi-dimensional sub-eye microlenses plays an important role in miniaturizing the volume and weight of an imaging system. In this manuscript, we present a novel structure of the bionic compound eye with multiple focal lengths. By the division of the microlens into two concentric radial zones including the inner zone and the outer zone with independent radius, the sub-eye which is a multi-level micro-scale structure can be formed with multiple focal lengths. The imaging capability of the structure has been simulated. The results show that the optical information in different depths can be acquired by the structure. Meanwhile, the parameters including aperture and radius of the two zones, which have an influence on the imaging quality have been analyzed and discussed. With the increasing of the ratio of inner and outer aperture, the imaging quality of the inner zone is becoming better, and instead the outer zone will become worse. In addition, through controlling the radius of the inner and outer zone independently, the design of sub-eye with different focal lengths can be realized. With the difference between the radius of the inner and outer zone becoming larger, the imaging resolution of the sub-eye will decrease. Therefore, the optimization of the multifocal structure should be carried out according to the actual imaging quality demands. Meanwhile, this study can provide references for the further applications of multifocal microlens in bionic compound eye.
This paper demonstrates an approach to fabricate nano-pillar based on thiol-ene via soft-lithography. The template is anodic aluminum oxygen (AAO) with ordered nano-holes with the diameter of 90nm.The nano-pillar consists of rigid thiol-ene features on an elastic poly(dimethylsiloxane) (PDMS) support. It is capable of patterning both flat and curved substrate. The thiol-ene is a new green UV-curable polymer material, including a number of advantages such as rapid UV-curing in the natural environment, low-cost, high resolution, and regulative performance characteristic. Here, we fabricated a two-layer structure, which included rigid thiol-ene nano-pillar with sub-100nm resolution and soft PDMS substrate. The experiment results show that this approach can be used to fabricate high-resolution features and the thiol-ene is an excellent imprint material. The fabrication technique in this paper is simple, low-cost, high-resolution and easy to high throughput, which has broad application prospects in the preparation of nanostructures.
Nanofabrication is the foundation of nanophotonics and has become a research hotspot in the last decades. The method
annealing crack is proposed to transfer the nanocracks from ultraviolet (UV) resist to other photonic materials. The
method is demonstrated by simulating the inner stress distribution with the thermal-structure analysis. In addition, the
parameter influence to the maximum stress is discussed and the results indicate that the annealing temperature has a
large effect. The method is simple, low cost, high efficiency and is a good candidate to fabricate nanophotonic structures
with critical size less than 50nm.
This paper presents an approach used to fabricate resonant subwavelength grating based on thiol-ene material. First of all, polydimethylsiloxane soft imprint stamp with opposite structure of the subwavelength grating master mold is made by casting. Then, the desired subwavelength grating with UV-curable thiol-ene material grating structure is fabricated using the polydimethylsioxane soft stamp by UV-curable soft-lithography. Here, we fabricate a subwavelength grating with period of 300nm using the approach, which could reflect blue light with wavelength ranging from 448nm to 482nm at a specific angle and presents the excellent resonant characteristic. The experimental results are consistent with the simulation results, demonstrating that the approach proposed in this paper could effectively fabricate the thiol-ene material resonant subwavelength grating structure. The thiol-ene material is a new green UV-curable polymer material, including a number of advantages such as rapid UV-curing in the natural environment, low-cost, high resolution, and regulative performance characteristic. The fabrication technique in this paper is simple, low-cost, and easy to high throughput, which has broad application prospects in the preparation of micro and nano structures.
In this paper, a novel thin film was proposed for optical super-resolution imaging, which contains a layer of closely-arranged barium titanate glass microsphere with diameter about 30-100μm embedded in a transparent polydimethylsiloxane soft mold. Then the imaging mechanism was analyzed by the finite-difference time-domain (FDTD) simulation and spectrum analysis method. Finally, the thin film was prepared and used to image the sample with sub-wavelength feature to confirm the capability of super-resolution imaging. The experimental result shows that an irresolvable Blu-ray DVD disk with feature size of 300nm can be resolved by placing a thin-film on its surface and then look through it with a conventional microscope. The thin film presented here is flexible, lightweight, easy to carry and can be used in the nanophotonics, nanoplasmonics, and biomedical imaging areas.
KEYWORDS: Microlens array, 3D image processing, Integral imaging, Imaging arrays, Imaging systems, 3D displays, Positron emission tomography, 3D image reconstruction, Lithography, 3D modeling
Integral imaging system with soft substrate is proposed and fabricated by lithographic method. The integral imaging
system consists of microlens array and micro-image array. Based on the optical design theory, the geometrical
parameters of the microlens array and micro-image array is calculated and simulated by the software Tracepro.
Furthermore, some experiments are carried out. The microlens array and micro-image array is fabricated on
Polyethylene Terephthalate substrate by lithographic method. After the alignment between the microlens array and the
micro-image array, three dimensional image can be formed over the microlens array. The imaging system is easy to
curve and can be used on some static displays, such as three dimensional display, three dimensional picture and so on.
Polymer optical elements have widely been investigated because of their low cost and simple fabrication. Currently, UV-curable epoxy resins have been become general polymer materials for optical elements. However, they are still limited by their intrinsic properties, such as a relatively low rate of polymerization and high formulation viscosity. This paper proposed and demonstrated a rapid UV-curable process for polymer optical elements fabrication based on a UV-curable and low-viscosity thiol-ene composition. Several optical elements, including one-dimensional gratings with a 10-um period, Dammann Gratings and microlens arrays (100μm lens diameter), were fabricated by the UV-curable thiol-ene composition and their optical properties were examined in detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.