The upcoming generation of 4-meter solar telescopes (such as DKIST and EST) and planned networks for synoptic solar observations (such as SPRING) will rely on full Stokes spectropolarimetric measurements to infer the properties of the solar atmosphere. They will produce a wealth of data whose analysis represents a formidable challenge. To solve this problem, we have pursued two approaches within the H2020 SOLARNET project: parallelization of a Milne-Eddington Stokes inversion code for use in mid-size servers and implementation in graphics processing units (GPUs). Here we present the results of those efforts. P-MILOS and G-MILOS are two Stokes inversion codes that can be used to produce maps of physical quantities in real time during the observations at the telescope, or to generate science-ready data from time series of spectropolarimetric measurements taken by both imaging and slit-based spectropolarimeters. These codes will open a new era in solar research.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.