Proceedings Article | 25 August 2004
Proc. SPIE. 5428, Signal and Data Processing of Small Targets 2004
KEYWORDS: Detection and tracking algorithms, Radar, Target detection, Computer simulations, Surveillance, Chromium, Lawrencium, Reconstruction algorithms, Defense and security, Signal processing
Over-the-horizon radar (OTHR) uses the refraction of high frequency radiation through the ionosphere in order to detect targets beyond the line-of-sight horizon. The complexities of the ionosphere can produce multipath propagation, which may result in multiple resolved detections for a single target. When there are multipath detections, an OTHR tracker will produce several spatially separated tracks for each target. Information conveying the state of the ionosphere is required in order to determine the true location of the target and is available in the form of a set of possible propagation paths, and a transformation from measured coordinates into ground coordinates for each path. Since there is no a-priori information as to how many targets are in the surveillance region, or which propagation path gave rise to which track, there is a joint target and propagation path association ambiguity which must be resolved using the available track and ionospheric information. The multipath track association problem has traditionally been solved using a multiple hypothesis technique, but a shortcoming of this method is that the number of possible association hypotheses increases exponentially with both the number of tracks and the number of possible propagation paths. This paper proposes an algorithm based on a combinatorial optimisation method to solve the multipath track association problem. The association is formulated as a two-dimensional assignment problem with additional constraints. The problem is then solved using Lagrangian relaxation, which is a technique familiar in the tracking literature for the multidimensional assignment problem arising in data association. It is argued that due to a fundamental property of relaxations convergence cannot be guaranteed for this problem. However, results show that a multipath track-to-track association algorithm based on Lagrangian relaxation, when compared with an exact algorithm, provides a large reduction in computational effort, without significantly degrading association accuracy.