Light concentration opens up the path to enhanced material efficiency of solar cells via increased conversion efficiency and decreased material requirement. For true material saving, a fabrication method allowing local growth of high quality absorber material is essential. We present two scalable fs-laser based approaches for bottom-up growth of Cu(In,Ga)Se2 micro islands utilizing either site-controlled assembly of In(,Ga) droplets on laser-patterned substrates during physical vapor deposition, or laser-induced forward transfer of (Cu,In,Ga) layers for local precursor arrangement. The Cu(In,Ga)Se2 absorbers formed after selenization can deliver working solar devices showing efficiency enhancement under light concentration.
Plasmonic and photonic nanoparticles have proven beneficial for solar cells in the aspect of light management. For improved exploitation of nanoparticles in solar cells, it is necessary to reveal the absorption enhancement mechanism from the nanoparticles. In this study, we investigated the nanoparticle-enhanced solar cells in near-field regime with optic and opto-electric scanning near-field optical microscopy (SNOM). The near-field distribution of regularly arranged silver and polystyrene nanoparticles produced by nanosphere lithography on Cu(In,Ga)Se2 (CIGSe) solar cells is characterized using a custom-built SNOM, which gives insight into the optical mechanism of light trapping from nanoparticles to solar cells. On the other hand, the photocurrent of CIGSe solar cells with and without nanoparticles is studied with an opto-electric SNOM by recording the photocurrent during surface scanning, further revealing the opto-electrical influences of the nanoparticles. In addition, finite element method simulations have been performed and agree with the results from SNOM. We found the dielectric polystyrene spheres are able to enhance the absorption and benefit the generation of charge carriers in the solar cells.
Martina Schmid, Guanchao Yin, Min Song, Shengkai Duan, Berit Heidmann, Diego Sancho-Martinez, Steven Kämmer, Tristan Köhler, Phillip Manley, Martha Lux-Steiner
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which—despite being a polycrystalline thin-film material—is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Publisher’s Note: This paper, originally published on 23 September 2016, was replaced with a corrected/revised version on 21 December 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Efficient light management in optoelectronic devices requires nanosystems where high optical qualities coincide with suitable device integration. The requirement of chemical and electrical passivation for integrating nanostrutures in e.g. thin film solar cells points towards the use of insulating and stable dielectric material, which however has to provide high scattering and near-fields as well. We investigate metal@dielectric core-shell nanoparticles and dielectric nanorods. Whereas core-shell nanoparticles can be simulated using Mie theory, nanorods of finite length are studied with the finite element method. We reveal that a metallic core within a thin dielectric shell can help to enhance scattering and near-field cross sections compared to a bare dielectric nanoparticle of the same radius. A dielectric nanorod has the benefit over a dielectric nanosphere in that it can generate much higher scattering cross sections and also give rise to a high near-field enhancement along its whole length. Electrical benefits of e.g. Ag@oxide nanoparticles in thin-film solar cells and ZnO nanorods in hybrid devices lie in reduction of recombination centers or close contact of the nanorod material with the surrounding organics, respectively. The optical benefit of dielectric shell material and elongated dielectric nanostructures is highlighted in this paper.
KEYWORDS: Particles, Near field scanning optical microscopy, Near field optics, Near field, Silver, Nanoparticles, Coating, Reflection, Glasses, Plasmonics
A scanning near-field optical microscope (SNOM) is a powerful tool to investigate optical effects that are smaller than Abbe’s limit. Its greatest strength is the simultaneous measurement of high-resolution topography and optical nearfield data that can be correlated to each other. However, the resolution of an aperture SNOM is always limited by the probe. It is a technical challenge to fabricate small illumination tips with a well-defined aperture and high transmission. The aperture size and the coating homogeneity will define the optical resolution and the optical image whereas the tip size and shape influence the topographic accuracy. Although the technique has been developing for many years, the correlation between simulated near-field data and measurement is still not convincing. To overcome this challenge, the mapping of near-field plasmonic interactions of silver nanoparticles is investigated. Different nanocluster samples with diverse distributions of silver particles are characterized via SNOM in illumination and collection mode. This will lead to topographical and optical images that can be used as an input for SNOM simulations with the aim of estimating optical artifacts. Including tip, particles, and substrate, our finite-elementmethod (FEM) simulations are based on the realistic geometry. Correlating the high-precision SNOM measurement and the detailed simulation of a full image scan will enable us to draw conclusions regarding near-field enhancements caused by interacting particles.
Both metallic nanoparticles exhibiting plasmonic effects and dielectric nanoparticles coupling the light into resonant modes have shown successful applications to photovoltaics. On a larger scale, microconcentrator optics promise to enhance solar cell efficiency and to reduce material consumption. Here, we want to create a link between the concentrators on the nano- and on the microscale. From metallic nanospheres, we turn to dielectric ones and then look at increasing radii to approach the microscale. The lenses are investigated with respect to their interaction with light using three-dimensional simulations with the finite-element method. Resulting maps of local electric field distributions reveal the focusing behavior of the dielectric spheres. For larger lens sizes, ray tracing calculations, which give ray distributions in agreement with electric field intensities, can be applied. Calculations of back focal lengths in geometrical optics coincide with ray tracing results and allow insight into how the focal length can be tuned as a function of particle size, substrate refractive index, and the shape of the microlens. Despite the similarities we find for the nano- and the microlenses, integration into solar cells needs to be carefully adjusted, depending on the goals of material saving, concentration level, focal distance, and lens size.
Metallic nanoparticles exhibiting plasmonic effects as well as dielectric nanoparticles coupling the light into resonant modes have both shown successful application to photovoltaics. On the larger scale, microconcentrator optics promise to enhance solar cell efficiency and reduce material consumption. Here we want to make the link between concentrators on the nano- and on the microscale. From metallic nanospheres we turn to dielectric ones and then look at increasing radii to approach concentrator optics on the mircoscale. The nano- and microlenses are investigated with respect to their interaction with light using 3D simulations with the finite element method. Resulting maps of local electric field distributions reveal the focusing behavior of the dielectric spheres. For larger lens sizes, ray tracing calculations can be applied which give ray distributions in agreement with areas of high electric field intensities. Calculations of back focal lengths using ray tracing coincide with results from geometrical optics simulations. They give us insight into how the focal length can be tuned as a function of particle size, but also depending on the substrate refractive index and the shape of the microlens. Turning from spherical to segment-shaped lenses allows us to approach the realistic case of microconcentrator optics and to draw conclusions about focus tuning and system design. Despite the similarities of focusing behavior we find for the nano- and the microlenses, the integration into solar cells needs to be carefully adjusted, depending on the ambition of material saving, concentration level, focal distance and lens size, all being closely related.
We use scanning near-field optical microscopy (SNOM) to characterize different plasmonic-nanoparticle situations with high spatial and spectral resolution in this comparative study. The near-field enhancement is measured with an aperture probe (Al coated glass fiber) and two CCD spectrometers for simultaneous detection of reflection and transmission. The images of transmission and reflection show a correlation to the topography. We present a new way to access the relative absorption and discuss the results with consideration of artifact influences. Near-field enhancements are deeper understood by imaging isolated particles. This near field will be compared to measurements of random-particle distributions. Therefore, we will show normalized reflection and transmission images of random structures that lay the foundation for an absolute interpretation of near-field images. The normalization considers both the far-field UV/VIS results and a reference image of the substrate. The near-field reflection of nanoparticle arrays shows an enhancement of 25 %. In view of specific applications, particle distributions implemented in two ways: as far-field scatters and as near field enhancing objects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.