The European Space Agency (ESA), cosine and its partners have been developing for 20 years the Silicon Pore Optics (SPO) technology. SPO enables the next generation of space x-ray telescopes, with increased sensitivity and resolution. NewAthena, the New Advanced Telescope for High Energy Astrophysics, has just been endorsed by ESA as one of its Lclass mission, to launch around 2037. NewAthena’s optic is modular and consists of up to 600 mirror modules that form together a ~2.5 m diameter X-ray mirror with a focal length of 12 m and an angular resolution of 9 arc-seconds half-energy width. The total polished mirror surface is ~300 m2, which will focus X-rays with an energy of about 0.3 – 10 keV onto two detectors, a wild-field imager (WFI) and an imaging spectrometer (XIFU). Building hundreds of such SPO mirror modules in a cost-efficient and timely manner is a formidable task and subject of a dedicated ESA technology development program.
We present in this paper the status of the optics production and illustrate not only recent X-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
Silicon Pore Optics (SPO) are the technology of choice for building the optics of the next generation X-ray observatory NewATHENA (New Advanced Telescope for High ENergy Astrophysics). Over the past 16 years Micronit has, in close collaboration with cosine and ESA, developed and optimized its manufacturing technology for SPO mirrors. Where the initial focus was on the basic process development, the attention then shifted towards optimizing the process to facilitate the ever-continuing quest for a better half-energy width of the optics. In parallel to these ongoing optimization efforts, more recently the focus is also on upscaling the technology/equipment towards a future flight production scenario, where roughly a ten-fold increase in capacity should be achieved, compared to the current production volume per year.
In this paper we present our current state-of-the-art SPO plate manufacturing process. Special attention is given to the recent advancements in optimizing and upscaling the dicing process, the laser-ID labelling process, wafer-scale automated measurements of plate critical to quality parameters, as well as the lithography process for reflective coating lift-off. Furthermore, the different wedging methodologies and the shift from wetbench processing to spray processing are introduced. The combined efforts in all of these areas enable a more automated plate manufacturing process, and an increase in optical performance of the telescope.
Using a combination of process development and upgraded machinery, the future flight production scenario for NewATHENA begins to take shape.
Silicon Pore Optics (SPO) have been invented and developed to enable x-ray optics for space applications that require a combination of high angular resolution while being light-weight to allow achieving a large mirror surface area. In 2005, the SPO technology development was initiated by the European Space Agency (ESA) for a flagship x-ray telescope mission and is currently being planned as a baseline for the NewATHENA mission scheduled for launch in the 2030s. Its more than 2m diameter mirror will be segmented and comprises of 492 individual Silicon Pore Optics (SPO) grazing-angle imagers, called mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of primary-secondary mirror pairs, each mirror made of silicon, coated to increase the collective area of the system, and shaped to bring the incoming photons to a common focus in 12 m distance. The mission aims to deliver an angular resolution of better than nine arc-seconds (Half-energy width) and effective area of about 1.1 m2 at an energy of 1 keV. We present in this paper the status of the optics production and illustrate not only recent x-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.