Wireless networks for sensor applications are required to support an adequate data throughput, range, node density and must consume as little power as possible. The Bluetooth specification has been designed for low power, medium data rate, cable replacement solutions and is therefore useful for wireless sensor networks. However it has a limitation of a maximum number of eight active devices per Bluetooth network (piconet). To be useful in wireless sensor networks a Bluetooth piconet requires a means to communicate to more than the maximum of eight active devices. This paper demonstrates techniques for expanding the usefulness of Bluetooth for wireless sensor networks. This has been done by using multiple access points, sharing the active member addresses of the Bluetooth piconet and utilising multiple piconet and scatternet tree structures. A comparison of existing piconet handoff mechanisms has been conducted and these have been evaluated for feasibility with the available hardware's limitations. Scatternet and piconet sharing mechanisms have been developed that allow a Bluetooth structure to support more than eight devices. These structures have been implemented with existing Bluetooth hardware and are compared via theoretical simulation and experimental results. The developed network of multiple Bluetooth access points combined with the developed Bluetooth structures provides several wireless networks suitable for sensor applications.
A wireless network of multiple sensor nodes for monitoring large numbers of mobile agents is described and investigated. Wireless monitoring provides time critical information from a number of data sources allowing near real-time analysis of the collected data. The developed wireless network provides a moderate data rate, is able to support many wireless nodes and is a low power solution. Novel network structures have been developed to satisfy all of these requirements.
This paper evaluates a number of currently available wireless communication protocols, concluding that a Bluetooth wireless network satisfies the above criteria. To support a large number of devices, topologies using inter-piconet and piconet sharing methods have been developed. These network structures are outlined in detail and have been developed with the current Bluetooth hardware limitations in mind. The proposed wireless networks have been developed to be implemented with current Bluetooth hardware. A summary of network performance is included for each developed network structure, and from these figures an appropriate network structure has been chosen that satisfies the requirements of a wireless sensor network for monitoring mobile agents.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.