The focusing mirrors for the new LCLS soft x-ray (SXR) experimental hutches are tangential pre-shaped mirrors mounted in a Kirkpatrick Baez configuration. The mirrors are prefigured with an elliptical profile, coinciding with the longest working focal distance. The mirrors are equipped with benders to enable focusing of the beam at different experimental stations and to work out of focus with an uniform beam. To add complexity to the system, the mirrors are also water-cooled and need to fit in a very tight space, due to real estate limitation.
For ensuring that the mirror profile is maintained at its sub-nm quality after the assembly of the mirror into its cooling and mechanical system, these mirrors need to undergo an extensive optics metrology study. The vertical and horizontal KB mirrors are first checked for twist error due to the mounting of the mirror substrate to its mechanics. This is measured with grazing incidence Fizeau interferometry. Then the mounted mirror needs to be shimmed to correct for any errors that may be caused by gluing of the mirror. This step requires a sequence of shimming and metrology measurement and must be repeated until the mirror shape is satisfactory.
In addition, the mirror bender response function must be well-characterized and documented for the commissioning as well as operation of these mirrors in the experimental hutches. The response function can be attained by measuring the mirror profile using the instruments available in the LCLS Optics Metrology Laboratory and the stitching techniques developed at LCLS. The mirrors are scheduled to be installed in the new SXR beamline in spring 2020. Metrology data and initial commissioning results proving the performance of these wavefront preserving optics will be presented in this report.
In this work we present the application of a 2D single grating wavefront sensor to align and characterize the 100 nm focus at the Coherent X-ray Imaging (CXI) endstation at the Linac Coherent Light Source (LCLS). The results agree well with a model of the system, indicating that the mirrors perform as designed when alignment is optimized. In addition, a comparison with the imprint technique confirms the validity of the results, which showed that wavefront-based alignment resulted in negligible astigmatism. Analysis of the retrieved focus profile indicates that intensities <1021 W=cm2 are achievable with currently available LCLS beam parameters and optimal mirror alignment.
In X-ray Free-Electron Lasers (FELs), intense and coherent pulses are generated via amplification of the undulator radiation from micro-bunched electron pulses. The initial radiation is spontaneous and intrinsically stochastic, thus causing shot-to-shot fluctuations in the intensity, pointing, and spatiotemporal profile of the X-ray beam. In this work, we use deep neural networks to investigate the fluctuations in X-ray beam profiles, thereby obtaining statistical information on the lasing process. A supervised model was built to classify X-ray images, and an unsupervised one to study the distribution of beam profiles. We have found that round-shaped profiles appear more often with increasing monochromator bandwidth, suggesting that some round-shaped images can be superpositions of higher-order modes. Our results also suggest that the X-ray beam continues to evolve past the FEL saturation length towards a round-shaped beam profile.
Preserving the coherence and wavefront of a diffraction limited x-ray beam from the source to the experiment poses stringent quality requirements on the production processes for X-ray optics. In the near future this will require on-line and in-situ at-wavelength metrology for both, free electron lasers and diffraction limited storage rings. A compact and easy to move X-ray grating interferometry (XGI) setup has been implemented by the Beamline Optics Group at PSI in order to characterize x-ray optical components by determining the aberrations from reconstructing the x-ray wavefront. The XGI setup was configured for measurements in the moire mode and tested with focusing optic at Swiss Light Source, Diamond Light Source and LCLS. In this paper measurements on a bendable toroidal mirror, a zone plate, a single and a stack of beryllium compound refractive lenses (CRL) are presented. From these measurements the focal position and quality of the beam spot in terms of wavefront distortions are determined by analysing the phase-signal obtained from the XGI measurement. In addition, using a bendable toroidal mirror, we directly compare radius of curvature measurements obtained from XGI data with data from a long-trace profilometer, and compare the CRL wavefront distortions with data obtained by ptychography.
We demonstrate hyperspectral coherent imaging in the EUV spectral region for the first time, without the need for hardware-based wavelength separation. This new scheme of spectromicroscopy is the most efficient use of EUV photons for imaging because there is no energy loss from mirrors or monochromatizing optics. An EUV spectral comb from a tabletop high-harmonic source, centered at a wavelength of 30nm, illuminates the sample and the scattered light is collected on a pixel-array detector. Using a lensless imaging technique known as ptychographical information multiplexing, we simultaneously retrieve images of the spectral response of the sample at each individual harmonic. We show that the retrieved spectral amplitude and phase agrees with theoretical predictions. This work demonstrates the power of coherent EUV beams for rapid material identification with nanometer-scale resolution.
Coherent diffraction imaging (CDI) has matured into a versatile phase-contrast microscopy technique capable of producing diffraction limited images without the need for high precision focusing elements. CDI has been most appropriately applied in the EUV/X-ray region of the spectrum where imaging optics are both difficult to produce and inefficient. By satisfying basic geometric constraints (such as Nyquist sampling of scattered intensities) diffraction imaging techniques essentially replace any imaging elements with sophisticated computer algorithms. We demonstrate the utility of our CDI-based, phase-contrast EUV microscope by quantitatively imaging objects in both transmission and reflection. Patterned feature depth is obtained in transmission using keyhole coherent diffraction imaging (KCDI) and feature height is quantitatively extracted in the first general, table-top reflection mode CDI microscope.
Recent breakthroughs in high harmonic generation have extended the reach of bright tabletop coherent light sources
from a previous limit of ≈100 eV in the extreme ultraviolet (EUV) all the way beyond 1 keV in the soft X-ray region.
Due to its intrinsically short pulse duration and spatial coherence, this light source can be used to probe the fastest
physical processes at the femtosecond timescale, with nanometer-scale spatial resolution using a technique called
coherent diffractive imaging (CDI). CDI is an aberration-free technique that replaces image-forming optics with a
computer phase retrieval algorithm, which recovers the phase of a measured diffraction amplitude. This technique
typically requires the sample of interest to be isolated; however, it is possible to loosen this constraint by imposing
isolation on the illumination. Here we extend previous tabletop results, in which we demonstrated the ability to image a
test object with 22 nm resolution using 13 nm light [3], to imaging of more complex samples using the keyhole CDI
technique adapted to our source. We have recently demonstrated the ability to image extended objects in a transmission
geometry with ≈100 nm resolution. Finally, we have taken preliminary CDI measurements of extended nanosystems in
reflection geometry. We expect that this capability will soon allow us to image dynamic processes in nanosystems at the
femtosecond and nanometer scale.
Coherent diffractive imaging (CDI) using EUV/X-rays has proven to be a powerful microscopy method for imaging nanoscale objects. In traditional CDI, the oversampling condition limits its applicability to small, isolated objects. A new technique called keyhole CDI was demonstrated on a synchrotron X-ray source to circumvent this limitation. Here we demonstrate the first keyhole CDI result with a tabletop extreme ultraviolet (EUV) source. The EUV source is based on high harmonic generation (HHG), and our modified form of keyhole CDI uses a highly reflective curved EUV mirror instead of a lossy Fresnel zone plate, offering a ~10x increase in photon throughput of the imaging system, and a more uniform illumination on the sample. In addition, we have demonstrated a record 22 nm resolution using our tabletop CDI setup, and also the successful extension to reflection mode for a periodic sample. Combining these results with keyhole CDI will open the path to the realization of a compact EUV microscope for imaging general non-isolated and non-periodic samples, in both transmission and reflection mode.
We implement coherent diffractive imaging (CDI) using a phase-matched high-harmonic generation (HHG) source
at 13 nm, demonstrating reconstructed images with a record 22 nm resolution for any tabletop, light-based
microscope. We also demonstrate the first reflection-mode CDI using a compact extreme ultraviolet (EUV)
source, achieving ≈100 nm resolution. A clear path towards even higher spatial resolution reflection-mode
tabletop imaging using apertured-illumination schemes will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.