Based on a dual interferometry frequency modulated wave laser (FMCW) laser ranging system, three steps to optimize the signal processing is proposed in this paper. The first step is signal re-sampling, by which the sampling signal is turned to be equal optical frequency intervals. The second step is splicing the re-sampled signal, by which can break though the tuning range of the laser source limitation. The last step is the all-phase pretreatment of the signal, its means that the all-phase Fast Fourier Transformation (apFFT) is used to handle the re-sampled signal, which could reduce the phase error of the signal. The experiments shows that the noise effect due to the tuning nonlinearity of laser can be reduced by re-sampling the signal, 50μm range resolution can be easily obtained by this method, the apFFT is more reliable and effective than FFT in the processing to reduce the phase error and improve the speed of operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.