PurposeTo study the difference between rigid registration and nonrigid registration using two forms of digitization (contact and noncontact) in human in vivo liver surgery.ApproachA Conoprobe device attachment and sterilization process was developed to enable prospective noncontact intraoperative acquisition of organ surface data in the operating room (OR). The noncontact Conoprobe digitization method was compared against stylus-based acquisition in the context of image-to-physical registration for image-guided surgical navigation. Data from n=10 patients undergoing liver resection were analyzed under an Institutional Review Board-approved study at Memorial Sloan Kettering Cancer Center. Organ surface coverage of each surface acquisition method was compared. Registration accuracies resulting from the acquisition techniques were compared for (1) rigid registration method (RRM), (2) model-based nonrigid registration method (NRM) using surface data only, and (3) NRM with one subsurface feature (vena cava) from tracked intraoperative ultrasound (NRM-VC). Novel vessel centerline and tumor targets were segmented and compared to their registered preoperative counterparts for accuracy validation.ResultsSurface data coverage collected by stylus and Conoprobe were 24.6%±6.4% and 19.6%±5.0%, respectively. The average difference between stylus data and Conoprobe data using NRM was −1.05 mm and using NRM-VC was −1.42 mm, indicating the registrations to Conoprobe data performed worse than to stylus data with both NRM approaches. However, using the stylus and Conoprobe acquisition methods led to significant improvement of NRM-VC over RRM by average differences of 4.48 and 3.66 mm, respectively.ConclusionThe first use of a sterile-field amenable Conoprobe surface acquisition strategy in the OR is reported for open liver surgery. Under clinical conditions, the nonrigid registration significantly outperformed standard-of-care rigid registration, and acquisition by contact-based stylus and noncontact-based Conoprobe produced similar registration results. The accuracy benefits of noncontact surface acquisition with a Conoprobe are likely obscured by inferior data coverage and intrinsic noise within acquisition systems.
Intrahepatic cholangiocarcinoma (IHC) is an aggressive liver cancer with a five-year survival rate of less than 10%. Surgery is the only curative treatment. However, most patients die of disease recurrence, with more than 50% recurring within 2 years. The liver is the most common site. Recurrence at liver within a short period after surgery is common and eventually leads to death. Currently, there is no way to assess the risk of early recurrence or death in these patients. Methods to predict these risks would help physicians select the best treatment plan for individual patients; patients at high risk of recurrence could be treated early or at the time of surgery with chemotherapy or radiation. Such changes in patient management would greatly impact patients’ prospects of survival. The objective of the present study is to identify preoperative computed tomography (CT)-based quantitative imaging predictors of early hepatic recurrence. Two hundred fifty four texture features were extracted from CT-tumor and future liver remnant (FLR) along with tumor size. With features selected using minimum redundancy maximum relevance method and AdaBoost classifier, we obtained an area under the receiver operating characteristic curve of 0.78 using a 3-fold cross-validation for a cohort of 139 patients with IHC.
Purpose: Our paper contributes to the burgeoning field of surgical data science. Specifically, multimodal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine previously defined individual models of radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure.
Approach: Retrospective analysis of prospectively acquired cyst fluid and CT scans was undertaken for this study. A predictive model combining clinical features with a cyst fluid inflammatory marker (CFIM) was applied to patient data. Quantitative imaging (QI) features describing radiomic patterns predictive of risk were extracted from scans. The CFIM model and QI model were combined into a single predictive model. An additional model was created with tumor-associated neutrophils (TANs) assessed by a pathologist at the time of resection.
Results: Thirty-three patients were analyzed (7 high risk and 26 low risk). The CFIM model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Combining the CFIM, QI, and TAN models further increased performance to an AUC of 0.98.
Conclusions: Quantitative analysis of routinely acquired CT scans combined with CFIMs provides accurate prediction of risk of pancreatic cancer progression. Although a larger cohort is needed for validation, this model represents a promising tool for preoperative assessment of IPMN.
This paper contributes to the burgeoning field of surgical data science. Specifically, multi-modal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure. We extracted radiomic features from CT scans and combined this with cyst-fluid markers. The cyst fluid model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Radiomic analysis of routinely acquired CT scans combined with cyst fluid inflammatory markers provides accurate prediction of risk of pancreatic cancer progression.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.