An ongoing collaboration among four US Department of Energy (DOE) National Laboratories has demonstrated key technology prototypes and software modeling tools required for new high-coherent flux beamline optical systems. New free electron laser (FEL) and diffraction-limited storage ring (DLSR) light sources demand wavefront preservation from source to sample to achieve and maintain optimal performance. Fine wavefront control was achieved using a novel, roomtemperature cooled mirror system called REAL (resistive element adjustable length) that combines cooling with applied, spatially variable auxiliary heating. Single-grating shearing interferometry (also called Talbot interferometry) and Hartmann wavefront sensors were developed and used for optical characterization and alignment on several beamlines, across a range of photon energies. Demonstrations of non-invasive hard x-ray wavefront sensing were performed using a thin diamond single-crystal as a beamsplitter.
As a scanning version of coherent diffraction imaging (CDI), X-ray ptychography has become a popular and very successful method for high-resolution quantitative imaging of extended specimens. The requirements of mostly coherent illumination and the scanning mechanism limit the throughput of ptychographic imaging. In this paper, we will introduce the methods we use at the Advanced Photon Source (APS) to achieve highthroughput ptychography by optimizing the parameters of the illumination beam. One work we have done is increasing the illumination flux by using a double-multilayer monochromator (DMM) optics with about 0.8% bandwidth. Compared with our double-crystal monochromator (DCM) optics with 0.01% bandwidth, this DMM optics provides around 20 times more flux. A multi-wavelength reconstruction method has been implemented to deal with the consequential degraded temporal coherence from such an illumination to ensure high-quality reconstruction. In the other work, we adopt a novel use of at-top focusing optics to generate a at-top beam with the diameter of about 1.5 μm on the focal plane. The better uniformity of the probe and the large beam size allow one to significantly increase the step size in ptychography scans and thereby the imaging efficiency.
Among different techniques based on x-ray nanoimaging, ptychography has become a popular tool to study specimens at nanometer-scale resolution without the need of using high-resolution optics that requires very stringent manufacturing processes. This high-resolution imaging method is compatible with other imaging modalities acquired in scanning microscopy. At the Advance Photon Source (APS), we have developed two fluorescence microscopes for simultaneous ptychography and fluorescence imaging which together provide a powerful technique to study samples in biology, environmental science, and materials science. Combined with different tilted sample projections, such correlative methods can yield high-resolution 3D structural and chemical images. More recent work has been focused on the development of a fast ptychography instrument called the Velociprobe which is built to take advantage of the over 100 times higher coherent flux provided by the coming APS upgrade source. The Velociprobe uses high-bandwidth accurate interferometry and advanced motion controls with fast continuous scanning schemes which are optimized for large-scale samples and 3D high-resolution imaging. This instrument has been demonstrated to obtain sub-10 nm resolution with different high-photon-efficient scanning schemes using fast data acquisition rate up to 3 kHz (currently limited by detector's full continuous frame rate). A ptychographic imaging rate of 100 _m2/second with a sub-20 nm spatial resolution was shown in this paper.
Motivated by the Advanced Photon Source Upgrade (APS-U), a new hard X-ray microscope called “Velociprobe” has been recently designed and built for fast ptychographic imaging with high spatial resolution. We are addressing the challenges of high-resolution and fast scanning with novel hardware/stage designs, new positioner control designs, and new data acquisition strategies, including the use of high bandwidth interferometric measurements. The use of granite, air-bearing-supported stages provides the necessary long travel ranges for coarse motion to accommodate real samples and variable energy operation while remaining highly stable during fine scanning. Scanning the low-mass zone plate enables high-speed high-precision motion of the probe over the sample. Our primary goal is to use this instrument to demonstrate sub-10 nm spatial resolution ptychography over a 1-square-micron area in under 10 seconds. We have also designed the instrument to take advantage of the upgraded source when the APS-U is completed. This presentation will describe the unique designs and characteristics of this instrument, and some preliminary data obtained during the instrument commission.
Ptychography was used to determine the focus of a Multilayer-Laue-Lens (MLL) at beamline 1-BM at the Advanced Photon Source (APS). The MLL had a record aperture of 102 microns with 15170 layers. The measurements were made at 12 keV. The focal length was 9.6 mm, and the outer-most zone was 4 nm thick. MLLs with ever larger apertures are under continuous development since ever longer focal lengths, ever larger working distances, and ever increased flux in the focus are desired. A focus size of 25 nm was determined by ptychographic phase retrieval from a gold grating sample with 1 micron lines and spaces over 3.0 microns horizontal distance. The MLL was set to focus in the horizontal plane of the bending magnet beamline. A CCD with 13.0 micron pixel size positioned 1.13 m downstream of the sample was used to collect the transmitted intensity distribution. The beam incident on the MLL covered the whole 102 micron aperture in the horizontal focusing direction and 20 microns in the vertical direction. 160 iterations of the difference map algorithm were sufficient to obtain a reconstructed image of the sample. The present work highlights the utility of a bending magnet source at the APS for performing coherence-based experiments. Use of ptychography at 1-BM on MLL optics opens the way to study diffraction-limited imaging of other hard x-ray optics.
KEYWORDS: X-rays, Microscopes, Materials science, Spatial resolution, Zone plates, Systems engineering, Software development, Reconstruction algorithms, Data acquisition, 3D acquisition
A new Transmission X-ray Microscope (TXM), optimized for in-situ nano-tomography experiments, has been designed and built at the Advanced Photon Source (APS). The instrument has been in operation for the last two years and is supporting users over large fields of Science, from energy storage and material science to natural sciences. The flexibility of our X-ray microscope design permits evolutionary geometries and can accommodate relatively heavy, up to 5 kg, and bulky in-situ cells while ensuring high spatial resolution, which is expected to improve steadily thanks to the support of the RD program led by the APS-Upgrade project on Fresnel zone plates (FZP). The robust sample stack, designed with minimum degrees of freedom shows a stability better than 4 nm rms at the sample location. The TXM operates with optics fabricated in-house. A spatial resolution of 30 nm per voxel has been demonstrated when the microscope operates with a 60 nm outermost zone width FZP with a measured efficiency of 18% at 8 keV. 20 nm FZP are also currently available and should be in routine use within the next few months once a new matching condenser is produced. In parallel, efficiency is being improved with opto-mechanical engineering (FZP stacking system) and software developments (more efficient reconstruction algorithms combined with different data acquisition schemes), enabling 3D dynamic studies when sample evolution occurs within a couple of tens of seconds.
Zone plates are diffractive focusing optics capable of nanometer focusing but limited focusing efficiency at hard x-ray energy. A smaller focus spot is possible by reducing the outer zone width (OZW) while increasing the zone height will generally increase focusing efficiency. The combination of thick zones with small outer zone width, or high aspect ratio, for better performing zone plates is not feasible with state-of-the-art fabrication methods and requires other methods to achieve the aspect ratio desired. Near-field stacking involves two zone plates with the same dimensions and aligning them within the depth of focus in the beam direction and one third of the OZW in the transverse direction. Due to the depth of focus limitation, stacking more than 2 zone plates is extremely difficult, so a new method was proposed and developed to stack zone plates in the intermediate field. Multiple stacking apparatuses were assembled and tested. We will report on results from stacking 80-nm OZW zone plates from a near-field stacking experiment at 10 keV X-ray energy and intermediate field stacking 6 zone plates at 27 keV X-ray energy. We will also present findings on how to combine the stacking techniques.
The initial result of using a single 2-D checkerboard phase-grating Talbot interferometer as a feed-back loop sensor
element of an adaptive x-ray mirror system is reported. The test was performed by measuring the surface profile of a
deformable Pt coated Silicon mirror at five different actuation states. The reflected beam was detected at the fractional
Talbot distance of a π/2 phase grating. The measured interferograms were de-convolved using the spatial harmonic
imaging technique to extract the phase and amplitude of the reflected wavefront. The wavefront was then propagated to
the mirror center to retrieve the surface profile of the mirror. The activation of a single actuator was easily detected from
the reconstructed surface profile of the mirror. The presented results indicate that the single phase-grating x-ray Talbot
interferometer is capable of sensing nano-meter scale profile changes of an adaptive mirror.
Here we report on the effort to develop a hard x-ray grating interferometry technique for application to hard x-ray optics
and wavefront characterization at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We will
mention the motivation for developing an x-ray interferometer at the APS and discuss the design of the interferometer.
We will also describe the efforts in fabricating 2-D gratings and a new type of grating having nanometer periods for
high-energy x-ray applications. The preliminary results obtained using x-ray Talbot interferometers built at APS, using a
broadband (pink) beam and a monochromatic beam demonstrate the importance of this tool as a metrology instrument
for optics and beam wavefront diagnostics.
Custom designed surface-relief gratings are used to generate two-dimensional, uniform intensity beam arrays in several current digital free-space photonic system demonstrators. Although the design process for creating these gratings depends intrinsically on the size of the beam array; the optimization algorithm and the available computational resources ultimately determine the greatest complexity grating that is easily obtained. A new design algorithm is presented that has proven its ability to quickly design large beam array generators (128 X 128 and larger solutions) composed of either uniform intensity or arbitrary intensity beams. The algorithm produces two-dimensional non-separable binary phase or multiphase level solutions that yield a higher diffraction efficiency than separable dimension designs. Although the algorithm must optimize up to the order of 106 parameters that determine the intensities of from 16 to 32 K beam intensities, a personal computer will generate solutions in a matter of a few minutes to a few hours. We evaluate the algorithm performance for a number of designs and demonstrate several patterns that have been fabricated onto fused silica substrates via microlithography and reactive ion etching.
We describe a technique for assembling fiber bundle arrays as needed in optical computing and photonic switching systems. Two 4 x 4 arrays with single-mode and multimode optical fibers were manufactured. Fiber ends were located to within 3 μm of their ideal position and to a pointing precision of 30 arcmin. A third 4 x 8 array was manufactured with single-mode fibers, and fiber ends were located to within 1.5 μm of their ideal position.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.