Owing to its strong optical characteristics, graphene has emerged in the field of ultrafast lasers as a prominent saturable absorber. In this communication, we present a passively mode-locked Er:Yb doped double-clad fiber laser using a graphene deposited tapered fiber (GDTF). Averaging 20 μm of diameter with a length of 6 mm, the taper enables a strong light–graphene interaction owing to the evanescent field of the excited cladding mode. To create the saturable absorber device, graphene solution is carefully deposited via a micro syringe so that the waist of the taper is completely immersed into the aqueous solution. Then, a continuous wave laser with output power up to 95-mW centered at 1550 nm is injected into the taper. Deposition of graphene onto the taper by the optical tweezers effect started when the transmitted power dropped significantly. Afterwards, the GDTF is implemented in a fiber cavity to test its mode-locking performance. At the maximum available pump power, we obtain the 326th harmonic mode locking of soliton bunches with average output power of 520 mW.
Dissipative soliton resonance (DSR) is an efficient way to achieve high energetic pulses without wave breaking. In fiber laser, DSR operation manifests as square pulses emission. Based on this principle, we have experimentally demonstrated pulses in the micro joule range. Experiments have been conducted using double-clad Er:Yb-doped fiber lasers in different optical configurations. In particular, we demonstrate 10 μJ DSR emission in an optimized cavity and also the possibility to observe wave breaking in DSR regime. In the latter case, harmonic mode-locking of square pulses is demonstrated.
We present a widely adjustable high energy square pulse laser operating in DSR in a passively mode-locked F8L using dual Er:Yb co-doped double clad amplifiers. By manually controlling the power of each amplifier, the pulse width can be varied in a range of 360 ns without generating multi-pulsing instabilities. To ensure that DSR would dominate the modelocking mechanism, we use a 1.5 km standard single-mode fiber in the cavity. At a maximum pumping power, the laser generated square pulses with 416 ns duration and an average output power of about 1.33 W with a repetition frequency of 133 KHz corresponding to a record pulse energy of 10 μJ.
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
We numerically analyze the square pulse emission from a passively mode-locked figure-of-eight microstructured optical fiber laser. Numerical simulations demonstrate that the high nonlinearity of the microstructured fiber plays a key role in the output pulse duration. A dual-stage erbium-doped fiber amplifier has been used in the cavity. The first amplifier, localized in the nonlinear amplifying loop mirror, allows control of the pulse width, while the second amplifier in the unidirectional ring allows variation of the amplitude without affecting the pulse width. Our results give some physical insight to the square pulse formation and the generation of high-energy pulses. Our numerical model provides a general approach to control the properties of a square pulse, and hence could be of great importance for the design of practical high-energy fiber laser systems.
The effect of an external continuous wave (cw) on the operating regime of a passively mode-locked double-clad fiber
laser, operating in the anomalous dispersion regime, is experimentally investigated. Starting from different soliton
distributions, we demonstrate that, under specific conditions, the cw signal forces the principal laser to operate in
harmonic mode-locking regime.
We investigate the soliton pattern formation in an erbium-doped figure-of-eight double-clad fiber laser. The mode-locking
is realized with a nonlinear amplifying loop mirror. Different soliton complexes have been obtained similar to
those obtained when the mode-locking is achieved through the nonlinear polarization rotation technique.
KEYWORDS: Solitons, Picosecond phenomena, Mode locking, Liquids, Crystals, Fiber lasers, Dispersion, Liquid crystals, High power fiber lasers, States of matter
Ordered and disordered pattern formation of solitons is experimentally investigated in the passively mode-locked doubleclad
erbium-doped fiber laser. Soliton complexes of about 500 pulses are obtained which organize in different patterns
analogous the states of the matter. We have identified a soliton gas, a supersonic soliton gas flow, a soliton liquid, a
soliton polycrystal and a crystal of solitons.
We report on the observation of bound state of some hundreds of solitons in a passively mode-locked Er:Yb-doped fiber
laser. A double-clad fiber is used in a unidirectional ring cavity where the mode-locking is obtained thanks to the
nonlinear polarization rotation. The phenomenon is described theoretically using a multiscale approach to the gain dynamics.
Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.