Relevance feedback in content-based image retrieval has been an active research focus for many years. It uses user-labeled information to re-adjust the measurement of similarity between images to get the improved retrieval results. In this paper we propose a simple and effective approach for image relevance feedback, which uses both positive and negative examples labeled by users to refine the query and update the distance measurement dynamically. Our method not only has a very low complexity but also adapts well to the changes of user’s retrieval interests. Experimental results on a database of 7,000 images represented by MPEG-7 color and texture descriptors show the efficiency of our algorithm compared with other two existing algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.