Benefiting from low cost, light weight and reduced volume in launch, deployable optical telescopes will be extensively applied in microsatellites. As a result of manufactured tolerance and external disturbance, the secondary mirror can’t arrive at designed position precisely after a deployable telescope is unfolded. We investigate an adjustment system with six degrees of freedom based on hexapod structure to solve this problem. There are mainly four parts in this paper. Firstly, the adjustment methods of deployable telescopes for microsatellites are introduced. Generally several kinds of optical components can be adjusted to align a deployed telescope: primary mirror, tip/tilt mirror and secondary mirror. Due to its high sensitivity and convenience, the secondary mirror is chosen to collimate the optical system of the telescope. Secondly, an adjustment system with hexapod structure is designed for a secondary mirror with 85 mm diameter. After comparing the characteristics of step motors, piezo actuators and voice coil motors (VCMs), VCMs are selected as the linear actuators. By using optical gratings as displacement sensors in the system, we can make closed-loop control come true. The hexapod structure mainly consists of 6 VCMs, 6 optical gratings and 6 oblique legs with flexible hinges. The secondary mirror adjustment system is 83 mm in diameter and 55 mm high. It has tip/tilt rotational ranges of ±2.205° with resolution of better than ±0.007°, and translational ranges of ±1.545 mm with resolution of better than ±0.966 μm. Thirdly, the maximum stress and the maximum deformation in the adjustment system are computed with finite element method. At last, the kinematics problems of the adjustment system are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.