Evaluation of tissue margins and hemodynamics is necessary during macropathology of skin lesions. This study aims to produce saliency maps of skin chromophores from ex-vivo specimens and observe the effect of formalin fixation on the maps. We used a multi-spectral imaging system with narrow-band illumination to capture various skin lesions. Saliency maps were produced with three different methods adapted from the literature by utilizing spectral absorption and absorption slope. Saliency maps derived from fixed and unfixed tissue were registered and subsequently compared in terms of correlation and histogram similarity. Preliminary results show high dissimilarity between maps of fixed and unfixed tissue, highlighting the influence of formalin fixing on hemodynamics, while relative distribution of melanin remained mostly unaffected.
Cytology, a method of estimating cancer or cellular atypia from microscopic images of scraped specimens, is used according to the pathologist’s experience to diagnose cases based on the degree of structural changes and atypia. Several methods of cell feature quantification, including nuclear size, nuclear shape, cytoplasm size, and chromatin texture, have been studied. We focus on chromatin distribution in the cell nucleus and propose new feature values that indicate the chromatin complexity, spreading, and bias, including convex hull ratio on multiple binary images, intensity distribution from the gravity center, and tangential component intensity and texture biases. The characteristics and cellular classification accuracies of the proposed features were verified through experiments using cervical smear samples, for which clear nuclear morphologic diagnostic criteria are available. In this experiment, we also used a stepwise support vector machine to create a machine learning model and a cross-validation algorithm with which to derive identification accuracy. Our results demonstrate the effectiveness of our proposed feature values.
The pathological diagnosis of a transplanted kidney is made on Banff Classification in order to gain an accurate
understanding of the condition of the kidney. This type of diagnosis is extremely difficult and, thus, a variety of methods
for diagnosis, including diagnosis by electron microscope, are being considered at present. Quantification of the
diagnostic information derived by image processing is required for such purposes. This study proposes an automatic
extraction method for normal glomeruli for the purpose of quantifying Elastica Van Gieson(EVG)-stained pathology
specimens. In addition, we provide a report on the package of methods that we have created for the extraction of the
glomerulus in the cortex.
Proc. SPIE. 10140, Medical Imaging 2017: Digital Pathology
KEYWORDS: Hyperspectral imaging, Liver, Computer aided diagnosis and therapy, Tissues, Pathology, Image analysis, Medical imaging, Digital imaging, Image classification, RGB color model
In digital pathology diagnosis, accurate recognition and quantification of the tissue structure is an important factor for
computer-aided diagnosis. However, the classification accuracy of cytoplasm is low in Hematoxylin and eosin (HE) stained
liver pathology specimens because the RGB color values of cytoplasm are almost similar to that of fibers. In this paper,
we propose a new tissue classification method for HE stained liver pathology specimens by using hyperspectral image. At
first we select valid spectra from the image to make a clear distinction between fibers and cytoplasm, and then classify
five types of tissue based on the bag of features (BoF). The average classification accuracy for all tissues was improved
by 11% in the case of using BoF of RGB and selected spectra bands in comparison with using only RGB. In particular,
the improvement reached to 24% for fibers and 5% for cytoplasm.
This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade.
The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.
Recent advances in information technology have improved pathological virtual-slide technology and diagnostic support system studies of pathological images. Diagnostic support systems utilize quantitative indices determined by image processing. In previous studies on diagnostic support systems, carcinomatous areas of breast or lung have been
recognized by the feature quantities of nuclear sizes, complexities, and internuclear distances based on graph theory,
among other features. Improving recognition accuracy is important for the addition of new feature quantities. We
focused on hepatocellular carcinoma (HCC) and investigated new feature quantities of histological images of HCC. One of the most important histological features of HCC is the trabecular pattern. For diagnosing cancer, it is important to recognize the tumor cell trabeculae. We propose a new algorithm for calculating the number of cell layers in histological images of HCC in tissue sections stained by hematoxylin and eosin. For the calculation, we used a Delaunay diagram that was based on the median points of nuclei, deleted the sinusoid and fat droplet regions from the Delaunay diagram, and counted the Delaunay lines while applying a thinning algorithm. Moreover, we experimented with the calculation of the number of cell layers with our method for different histological grades of HCC. The number of cell layers discriminated tumor differentiations and Edmondson grades; therefore, our algorithm may serve as an index of HCC for diagnostic support systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.