PROCEEDINGS ARTICLE | April 9, 1999
Proc. SPIE. 3608, Biomedical Applications of Raman Spectroscopy
KEYWORDS: FT-IR spectroscopy, Proteins, Glucose, Spectroscopy, Luminescence, Molecules, Raman spectroscopy, Infrared spectroscopy, Infrared radiation, Absorption
Detection of nonenzymatic glycated proteins is a very significant feature in diabetes, aging and related diseases, therefore we have carried out an FTIR spectroscopic study for glycated and native proteins such as (gamma) -globulin, human serum albumin. For this purpose, commercially available proteins were glycated by a usual procedure and their FTIR spectra were recorded together with that of the native ones. In order to follow the changes in time, (gamma) -globulin was glycated during 1, 2, 3, 5 and 8 weeks and their spectra were recorded. Direct verification was obtained by examining a model unit where the -NH2 group was attached to glucose. The spectrum shows a strong peak at 3500 cm-1 confirming the observed variation in time dependent spectra. The general features of the spectra are very similar and there was no additional structure or change in the peaks. This is understandable as not all the lysine residues are glycated, only a small fraction. Glucose is attached to the (epsilon) -amino group of lysine to form Amadori products, and therefore, the vibrational modes corresponding to the (epsilon) -NH2 unit of lysine are expected to be altered. This region exactly lies in the Amide I region of protein structure. Careful investigation of this part, indeed, shows a complex structure originated from alternations of -NH2 group. Thus, the present investigation indicates that an optical approach could be a rapid and effective method to identify the nonenzymatic glycation process.