Met-myoglobin is a major component related to meat discoloration, and it gradually accumulates over time after the meat is slaughtered. Recently, studies have been conducted to observe the changes in the composition of met-myoglobin in the meat along with its storage time using Diffuse Reflectance Spectroscopy(DRS). DRS is an optical technique that is simple and can estimate the composition of chromophores without damaging the sample. However, since DRS requires high resolution and complicated fitting process, it is difficult to apply DRS to the mobile environment. Therefore, the purpose of our study is to classify the freshness of meat by extracting features from low spectral resolution diffuse reflectance spectrum by using the deep learning model. To improve the generality of the model, a data augmentation was used. To consider the applicability at low-resolution spectrometer, the diffuse reflectance spectrum was down-sampled 5, 10, 30 and 50 times.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.