Soil moisture is a key component of water balance models. Physically, it is a nonlinear function of parameters that are not easily measured spatially, such as soil texture and soil type. Thus, several studies have been conducted on the estimation of soil moisture using remotely sensed data and data mining techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). However, all models developed based on these techniques are limited to site-specific applications where they are trained and their parameters are tuned. Moreover, since the system of non-linear equations produced by and conducted in the machine learning process are not accessible to researchers, each application of these machine learning approaches must repeat these training steps for any new study area. The fact that the results of this machine learning, black box approach cannot be easily transferred to different locations for extraction of soil moisture estimates is frustrating, and it can lead to inaccurate comparisons between methods or model performance. To overcome the Black-box issue, this study employed a powerful technique called genetic programming (GP), which is a combination of an evolutionary algorithm and artificial intelligence, to simulate soil moisture at different levels using high-resolution, multispectral imagery acquired with an unmanned aerial vehicle (UAV). The output of this approach is either a linear or nonlinear empirical equation that can be used by others. The performance of GP was compared with ANN and SVM modeling results. Several sets of high-resolution aerial imagery captured by the Utah State University AggieAir UAV system over two experimental pasture sites located in northern and southern Utah were used for this soil moisture estimation approach. The inputs used to train these models include the reflectance for the visible, near-infrared (NIR), and thermal bands. The results show (1) the performance of GP versus ANN and SVM and (2) the master equation provided by GP, which can be used in other locations and applications.
KEYWORDS: Unmanned aerial vehicles, Vegetation, Data modeling, Near infrared, Remote sensing, Reflectivity, Global Positioning System, 3D modeling, Clouds, Image resolution
Satellites and autonomous unmanned aerial vehicles (UAVs) are two major platforms for acquiring remotely-sensed information of the earth’s surface. Due to the limitations of satellite-based imagery, such as coarse spatial resolution and fixed schedules, applications of UAVs as low-cost remote sensing systems are rapidly expanding in many research areas, particularly precision agriculture. UAVs can provide imagery with high spatial resolution (finer than 1 meter) and acquire information in visible, near infrared, and even thermal bands. In agriculture, vegetation characteristics such as health, water stress, and the amount of biomass, can be estimated using UAV imagery. In this study, three sets of high-resolution aerial imagery have been used for yield estimation based on vegetation indices. These images were captured by the Utah State University AggieAir™ UAV system flown in June 2017, August 2017, and October 2017 over a field experiment pasture site located in northern Utah. The pasture study area is primarily tall fescue. The field experiment includes 20 50 x 20-m plots, with 4 replications of 5 irrigation levels. Approximately 60 yield samples were harvested after each flight. Sample locations were recorded with high-accuracy real-time kinematic (RTK) GPS. In addition, the leaf area index (LAI) for each sample plot was measured using an optical sensor (LAI2200C) before harvesting. The relationship of yield for each sample versus vegetation indices (VIs) was explored. The VIs include the normalized difference vegetation index (NDVI), calculated using AggieAir imagery, and LAI measured using a ground-based sensor. The results of this study reveal the correlation between vegetation indices and the amount of biomass.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.