Fraunhofer HHI’s hybrid photonic integration technology based on SiN and polymer waveguiding platforms enables photonic integrated circuits operating at wavelengths from the infrared down to the visible. Hybrid photonic integration processes allow integrating active photonic building blocks such as lasers and active sections, as well as non-reciprocal and non-linear functionalities. Those features prove the large potential of Fraunhofer HHI’s hybrid photonic integration technology in application domains such as sensing and quantum technologies.
A photonic engine for the integration of multi-lane optical transceivers is presented. The building blocks are InP-based electro-absorption modulated lasers and photodiodes capable of operating at 50 GBaud with PAM-4 modulation, and a low-cost polymer waveguiding chip providing routing of the multiple lanes and connectivity towards standard single-mode fibers. An automatic process for the hybrid assembly of the different building blocks has been developed, and photonic integrated circuits with up to 16 lanes have been demonstrated. Furthermore, high-frequency flexible interconnects with bandwidths beyond 100 GHz provide a connectivity solution between photonics and high-speed electronics.
Commercial introduction of emerging integrated photonics technologies requires a long and complex multi-layer product development, industrialization, and qualification cycles at all levels of value chain from initial product design, material sourcing, component-system-module manufacturing, and testing, through marketing and delivery of new products to the market. Scalable assembly and packaging of electronic-photonic integrated modules is important and may take more than a half of the entire product’s costs. In this paper, we will report on some of our industrial processes for scalable photonics packaging, as well as challenges and results obtained from our research and innovation projects.
In this paper, we present the development of a miniaturized Laser Doppler Vibrometer (LDV) system, based on the 3D hybrid integration of the Si3N4 platform of LioniX (TriPleX) and the polymer platform of FhG-HHI (PolyBoard). The photonic integrated circuit (PIC) supports all the functionalities of an LDV system including the splitting of the input light to the measurement and the reference beam, the introduction of an optical frequency shift up to 100 kHz, polarization handling and detection of the reflected measurement beam, using a heterodyne detection technique. The optical frequency shift is accommodated in the TriPleX section of the PIC based on a simple serrodyne scheme, where a phase modulator is driven with a sawtooth signal with the desired frequency. The modulation of the optical field is based on the stress-optic effect utilizing thin-films of PZT deposited on top of the waveguide structures of the TriPleX platform, capable of supporting modulation frequencies up to several MHz. The PolyBoard part enables polarization handling and heterodyne detection of the reflected beam using micro-optic elements on chip, including a polarization beam splitter (PBS), a half wave plate (HWP), and a pair of balanced detectors with four photodiodes that are flip chip bonded on the top. The TriPleX and the PolyBoard platform were brought together based on the 3D hybrid integration, using mode size converters and vertical directional couplers with coupling losses lower than 15 dB. On-chip beating, using the integrated photodiodes is experimentally demonstrated.
Photonic integrated circuits (PICs) are one of the key enablers for beyond 5G networks. A novel generation of fully integrated photonic-enabled transceivers operating seamlessly in W- D- and THz-bands is developed within the EU funded project TERAWAY. Photonic integration technology enables key photonic functionalities on a single PIC including photonic up/down conversion. For efficient down-conversion at the photonic integrated receiver, we develop the first waveguide-fed photoconductive antenna for THz communications. Finally, we report on the experimental implementation of a fully photonic-enabled link operating across W- D- and THz-bands.
Fraunhofer HHI's hybrid integration platform PolyBoard combines polymer passive waveguides with InP and other materials. We present new functionalities integrated in PolyBoard:
Isolation: With a microoptical bench integrated into polymer isolators can be built.
Quantum and sensing: By integrating nonlinear materials into the microoptical bench, 2nd (775 nm), 3rd (515 nm), and 4th (387 nm) harmonic generation could be observed
3D: First results for a 2x4 phased array have been achieved
Flip-chip laser active alignment: We have developed an active alignment process, which also works for flip-chip lasers which are impossible to electrically contact during the alignment process.
First automation results show the potential for cost effective volume scaling.
We describe the assembly of a 5G transceiver leveraging photonics for the generation, emission and detection of THz wireless signals. The transceiver and all associated control electronics and power supplies are designed for mounting in a mobile aerial unit. A photonics motherboard concept that brings together polymer, III-V and SiNbased photonic platforms and provides optical fiber connectivity is used for the assembly. In addition, scalable integration of 3D components, in this case an antenna rod or rod array, is demonstrated. Thermal considerations arising from the dense integration of photonic and electronic components and the resulting concentrated heat load are also discussed.
We present the current challenges for high frequency interconnects, especially for calibrated measures of the frequency response of components operating above 100 GHz. This is the challenge addressed by the TERAmeasure Future and Emerging Technologies project, aiming to combine photonics and electronics to develop new paradigm in the millimetre and Terahertz frequency ranges, overcoming the current obstacles to better measurements, eliminating the frequency banded nature of rectangular waveguides and providing metrology-grade results across the full frequency range.
Nonreciprocal optical functionalities like optical isolators and circulators are key components for the suppression of unwanted optical feedback in lasers and are also widely used for light routing in fiber-based measurement systems such as optical coherence tomography. Therefore, they are important building blocks in integrated optics, which promises further miniaturization and cost reduction of optical elements for telecom, datacom, and sensing applications. In this work, we experimentally demonstrate a four-port polarization independent optical circulator on a polymer-based hybrid integration platform. The circulator consists of polymer waveguides and two thin-film polarization beam splitters (PBSs) inserted into waveguides via etched slots. Crystalline, pre-magnetized bulk Faraday rotators (FRs) and half-wave plates (HWPs) are inserted into free-space sections, formed by pairs of waveguide butt-coupled GRIN lenses. For a first demonstrator, on-chip losses down to 5 dB and optical isolations up to 24 dB were measured, depending on the different input and output constellations, as well as the polarization. By applying an external magnetic field opposite to the magnetization of the faraday rotators, it is possible to repole the magneto-optic material, leading to reversely circulating light inside the device. This enables optical switching between ports in form of a latching switch, which maintains its state after removing the external magnetic field.
Existing transceiver technology inside data centers will soon reach its limits due to the enormous traffic growth rates driven by new, bandwidth-hungry applications. Efforts to develop the next generation of 800Gbps and 1.6Tbps transceivers for intra-DC optical interconnects have already kicked-off to address the demands in traffic, the exhaustion of the ports at the digital switches and the power consumption limitations inherent to the use of many lower capacity modules. The new generation of optical modules must also provide Terabit capacities at low cost, necessitating the use of high-volume manufacturing processes. TERIPHIC is an EU funded R and D project that aims at developing transceiver modules with up to 1.6 Tbps capacity over 16 lanes in duplex fiber and cost less than 1 € per Gbps for distances up to 2 km, utilizing PAM-4 modulation for 100Gbps per lane and high-volume production compatible transceiver designs. At the component level, TERIPHIC will rely on arrays of high-speed electronics, InP Externally Modulated Lasers (EMLs) and InP photodetectors, and at the integration level it will rely on a polymer photonic platform as a host motherboard, leveraging its flexibility and powerful toolbox. A summary of the progress on the TERIPHIC transceiver modules concept, both at the component level and integration level is presented in this paper.
3D photonic integration introduces a new degree of freedom in the design of photonic integrated circuits (PICs) compared to standard 2D-like structures. Novel applications such as large-scale optical switching matrices, e.g. for top-of- rack cross connect switches in data centers, benefit from the additional design flexibility due to their waveguide crossing-free architecture and compact footprint. In this work, a novel 3D 4×4 multi-mode interference coupler (MMI) based on HHI’s polymer-based photonic integration platform PolyBoard is presented. The fabrication process of the PolyBoard platform allows for the realization of vertically stacked polymer waveguide layers. Cascading two of the presented 3D 4×4 MMIs will form the building block of future large-scale 3D switching matrices. The 3D 4×4 MMI structure comprises two waveguide layers separated by a distance of 7.2 μm, with two input and two output waveguides in each layer, and a multimode interference (MMI) section in between. The vertical MMI section serves as the interconnection between the different waveguide layers and distributes the incoming light from each input waveguide across the four output ports of the 4×4 MMI. Design rules and fabrication methodology of these novel structures are presented in detail. Preliminary measurements demonstrate the proof-of-concept indicating an insertion loss below 9.3 dB, including fiber-chip coupling loss and the 6 dB intrinsic loss.
Recent developments in versatile polymer-based technologies and hybrid integration processes offer a flexible and cost-efficient alternative for creating very complex photonic components and integrated circuits. The fast and efficient test, optimization and verification of new ideas requires an automated and reproducible simulation and design process supporting flexible layout-driven and layout-aware schematic-driven methodologies. Targeting very complex designs, even small fabrication tolerances of one building block could make a huge difference on the performance and manufacturability of the whole structure. To reduce risk of failure and to make performance predictions by virtual prototyping reliable, the simulation model of each single building block needs to be working correctly based not only on the appropriate mathematical and physical equations, but also on adequate information provided by the foundry where the final structure will be manufactured.
The PolyPhotonics Berlin consortium targets to address these design challenges and establish a new versatile integration platform combining polymer with Indium-Phosphide and thin-film filter based technologies for numerous photonics applications in the global communications and sensing market. In this paper we will present our methodologies for modelling and prototyping optical elements including hybrid coupling techniques, and compare them with exemplary characterization data obtained from measurements of fabricated devices and test structures. We will demonstrate how the seamless integration between photonic circuit and foundry knowledge enable the rapid virtual prototyping of complex photonic components and integrated circuits.
We demonstrate the hybrid integration of a multi-format tunable transmitter and a coherent optical receiver based on optical polymers and InP electronics and photonics for next generation metro and core optical networks. The transmitter comprises an array of two InP Mach-Zehnder modulators (MZMs) with 42 GHz bandwidth and two passive PolyBoards at the back- and front-end of the device. The back-end PolyBoard integrates an InP gain chip, a Bragg grating and a phase section on the polymer substrate capable of 22 nm wavelength tunability inside the C-band and optical waveguides that guide the light to the inputs of the two InP MZMs. The front-end PolyBoard provides the optical waveguides for combing the In-phase and Quadrature-phase modulated signals via an integrated thermo-optic phase shifter for applying the pi/2 phase-shift at the lower arm and a 3-dB optical coupler at the output. Two InP-double heterojunction bipolar transistor (InP-DHBT) 3-bit power digital-to-analog converters (DACs) are hybridly integrated at either side of the MZM array chip in order to drive the IQ transmitter with QPSK, 16-QAM and 64-QAM encoded signals. The coherent receiver is based on the other side on a PolyBoard, which integrates an InP gain chip and a monolithic Bragg grating for the formation of the local oscillator laser, and a monolithic 90° optical hybrid. This PolyBoard is further integrated with a 4-fold InP photodiode array chip with more than 80 GHz bandwidth and two high-speed InP-DHBT transimpedance amplifiers (TIAs) with automatic gain control. The transmitter and the receiver have been experimentally evaluated at 25Gbaud over 100 km for mQAM modulation showing bit-error-rate (BER) performance performance below FEC limit.
Photonic devices and new functions based on HHI’s hybrid integration platform PolyBoard are presented providing lowloss thin-film-element-based light routing, an on-chip micro-optical bench and flexible chips comprising optical and electrical waveguides. The newly developed transfer and integration of graphene layers enables the fabrication of active optoelectronic devices in the intrinsically passive polymer waveguide networks with bandwidths in the GHz range. These novel functionalities in combination with the mature thermo-optic components of the PolyBoard platform such as tunable lasers, switches and variable attenuators pave the way towards new applications of photonic integrated circuits in communications and sensors.
Graphene with its high carrier mobility as well as its tunable light absorption is an attractive active material for highspeed electro-absorption modulators (EAMs). Large-area CVD-grown graphene monolayers can be transferred onto arbitrary substrates to add active optoelectronic properties to intrinsically passive photonic integration platforms. In this work, we present graphene-based EAMs integrated in passive polymer waveguides. To facilitate modulation frequencies in the GHz range, a 50 Ω termination resistor as well as a DC blocking capacitor are integrated with graphene EAMs for the first time. Large signal data transmission experiments were carried out across the O, C and L optical communications bands. The fastest devices exhibit a 3-dB bandwidth of more than 4 GHz. Our analytical model of the modulation response for the graphene-based EAMs is in good agreement with the measurement results. It predicts that bandwidths greater than 50 GHz are possible with future device iterations. Owing to the absorption properties of the graphene layers, the devices are expected to be functional at smaller wavelengths of interest for optical interconnects and data-communications as well, offering a novel flexibility for the integration of high-speed functionalities in optoelectronic integrated circuits. Our work is the first step towards an Active Optical Printed Circuit Board, hiding the optics completely inside the board and thus removing entry barriers in manufacturing. We believe this will lead to the same success as observed in Active Optical Cables for short range optically wired connections.
A hybrid polymer/InP dual DBR laser at 1.5μm is presented as an optical source for heterodyne generation and detection of cw-THz signals. The device consists of an active InP chip as an active gain element, end-fire coupled to a polymer chip with thermo-optically tunable phase shifters and Bragg gratings. Mode-hop-free tuning of 1.1 THz has been achieved on the single DBR lasers. The usability of such sources for heterodyne cw-THz generation has been demonstrated in a coherent cw-THz setup. Scans in the THz range show a resolution of the H2O absorption lines comparable to the results achievable with commercially-available external-cavity diode lasers.
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
Recent progress on polymer-based photonic devices and hybrid photonic integration
technology using InP-based active components is presented. High performance thermo-optic
components, including compact polymer variable optical attenuators and switches are powerful
tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide
gratings integrated with InP laser and detector arrays function as low-cost optical line terminals
(OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm
filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less
optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids
builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer
waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision-
multiplexing transmission technology using multi-core fibers and the conventional PLCbased
photonic platforms, appealing to the fast development of dense 3D photonic integration.
Recent progress of low-loss silicon nitride waveguide in polymer is presented. The fabrication technology requires only low temperature (<200°C) processes and standard photolithography. These waveguides feature a large geometric aspect ratio, resulting in a strong waveguide birefringence. For the TM mode an average propagation loss of ~ 0.72 dB/cm is measured, while for the TE mode the value is ~ 0.96 dB/cm. Also demonstrated are uniform Bragg-grating filters and sampled grating filters. Since the waveguide modes are weakly guided and the majority of light field distributes in the polymer cladding, various optical properties of the polymer materials can be exploited. A thermally tunable waveguide Bragg grating is thus demonstrated, with wavelength tuning range above 57 nm for the TM mode and 49 nm for the TE mode, at a tuning power of ~ 220 mW.
We perform the thermal and optical simulations of silicon nitride / polymer hybrid waveguides with different heating
schemes by finite element method. Both the top and buried microheaters are adopted to realize tuning function by the
thermo-optic effect. We find the buried microheater is more energy-efficient than the top microheater in creating a
uniformed temperature environment in the waveguide region. On the other hand, the top electrode tends to create a
strong temperature gradient through the waveguide, which in turn distorts the optical mode. This distortion, however, is
different for TE and TM modes. This thermally induced birefringence effect is thoroughly investigated in this paper.
In this work, a direct DQPSK receiver was fabricated, which comprises a polymer waveguide based delay-line
interferometer (DLI); a polymer based optical hybrid, and two monolithic pairs of > 25 GHz bandwidth photodiodes that
are vertically coupled to the polymer planar lightwave circuit (PLC) via integrated 45° mirrors. The common mode
rejection ratio (CMRR) is used to characterize the performance of coherent receivers, by indicating the electrical power
balance between the balanced detectors. However, the standard CMRR can only be measured when the PDs can be
illuminated separately. Also, the standard CMRR does not take into account the errors in the relative phases of the
receiver outputs. We introduce an adapted CMRR to characterize the direct receiver, which takes into account the
unequal responsivities of the PDs, the uneven split of the input power by the DLI and hybrid, the phase error and the
extinction ratio of the DLI and hybrid.
In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and
optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC)
technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this
technology, in particular the coupling between laser diodes and polymer waveguides, and between
waveguides and photodiodes and also fibers are discussed.
"Berlin Access", a regional R&D project carried out by six companies and Heinrich Hertz Institute, Fraunhofer
Society, is geared towards low cost solutions for fibre access network architectures (PON and CWDM-PON), ONU
transceivers, and passive fibre components. Close communication with system manufacturers, non-incumbent
carriers, and a city services supplier implementing a local FTTH network supports orientation towards market
demands. In this paper we report on a new FTTH transceiver based on an all-polymer PLC motherboard. The
waveguides exhibit high transmission, strong optical confinement, and large operation temperature range. Low loss
passively adjusted fibre/PLC coupling is achieved by employing a waveguide taper. Downstream/upstream
wavelength separation is accomplished by a directional coupler, or, alternatively, a thin film filter inserted into the
input/output waveguide (the latter approach also allowing for the provisioning of an overlay broadcasting channel).
The horizontal-cavity surface-emitting laser diode, the pin-photodiode (equipped with a thin film filter for improved
crosstalk suppression), and the monitor diode are all flip-chip surface mounted; the light being coupled via 45°
waveguide mirrors. Chip mounting can be done with a commercial fineplacer using semi-active automatic
alignment. Micro-strip lines with impedances adapted to both laser and photodiode are fabricated on the basis of the
PLC films. The polymer motherboard integration scheme offers compact transceiver optical subassemblies and lends
itself favourably to highly automized, low cost manufacturing with high yield. Extended functionalities like loss of
light alarm or concepts for colourless CWDM ONUs can be easily realized with this concept.
In the age of information society and internet the requirements of fast transfers of large data streams for different applications are growing day by day. Killer-applications like teleconferencing, video-on-demand, online-games, virtual reality etc. are waiting in the wings. The optical network technology using the great bandwidth of glass fibre is the most suitable technology for these demands. Not only glass fibre is required, but also a broad range of optical components, such as multiplexers, demultiplexers, optical switches, optical attenuators, splitters and combiners, which are usually produced in silica technology. Polymeric materials are becoming more and more interesting for these applications, since they promise for instance lower power consumption and a reduction of production costs compared to their silica based pendants. Polycyanurate ester resins are a relatively new class of high-performance polymers with outstanding properties, for example high thermal stability, low optical loss, low dielectric constant, good adhesion and outstanding mechanical properties. This paper focuses on optical loss and birefringence of such materials at 1550 nm. The results lead the way to optimization for use in integrated optics and for the production of embedded waveguides and devices.
Polymeric optical planar waveguide devices such as optical switches, optical arrayed-waveguide grating (AWG) multiplexer/demultiplexer, optical add/drop multiplexer are promising for both of optical WDM networks and access network. For investigating such polymer devices, new polymeric waveguide materials were developed and different polymer integrated optical devices including interferometric-type optical switches, digital-optical switches (DOS), hybrid polymer/silica vertical coupler switches (VCS), polymer AWG multiplexer and athermal all- polymer AWG multiplexer have been studied.
Thermo-optic 1x2 vertical coupler switches (VCSs) using a hybrid polymer/silica integration technology were designed using finite element method and coupled mode method for different refractive index contrasts. The multilayer structures were optimized by thermal analysis. Based on this design and simulation, hybrid polymer/silica thermo-optic 1x2VSCs exhibiting low insertion loss, low crosstalk, low switching power, and polarization independence were demonstrated. Using this 1x2VCS as the building block, a 1x8VCS has been implemented.
In this paper, the fabrication and characterization of polymeric thermo-optic (T/O) single switching elements and (4 X 4)-switching matrices are described. The first loop experiment with cascaded transparent OFDM crossconnects including a polymeric (4 X 4)-switching matrix is reported. In order to reduce insertion loss, power consumption and crosstalk, the optimization strategy for the polymeric T/O switches is discussed.
Polymer technology shows the potential to fabricate and integrate the basic components of OFDM-crossconnect elements which are important signal processing units in a future transparent optical network. The fabrication and characterization of integrated optical polymer components like power splitters and combiners and polymer directional couplers are presented. The devices are fiber-pigtailed, packaged and exhibit waveguide losses in the order of 1 dB/cm at 1.55 micrometers wavelength. Studies based on guest/host-polymer-systems for application on electro-optic polymer devices are shown and the synthesis and characterization of rare-earth doped polymers for active device applications are reported. Because polymer technology is a conceptional hybrid, a combination of semiconductor and polymer elements on large substrates is proposed. This opens up the possibility for a future large scale integration of optical components to functional devices by a cost-effective technology.
Optical technology is now established as the basis of a future integrated broadband communication network (IBCN). The capacity of an optical system can be increased by the development of transmission and switching facilities of the coherent multicarrier (CMC) technique. This contribution concentrates on the structure and technology of a CMC crossconnect, which may be realized as an integrated optical polymer circuit. The manufacture of passive polymer waveguide devices is presented. Further electro-optical polymer devices and erbium-doped PMMA applications are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.